| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq12i | GIF version | ||
| Description: Equality inference for cross product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12i.1 | ⊢ 𝐴 = 𝐵 |
| xpeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| xpeq12i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | xpeq12 4737 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 × cxp 4716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: xpssres 5039 imainrect 5173 cnvssrndm 5249 txbasval 14935 |
| Copyright terms: Public domain | W3C validator |