| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq12i | GIF version | ||
| Description: Equality inference for cross product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12i.1 | ⊢ 𝐴 = 𝐵 |
| xpeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| xpeq12i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | xpeq12 4683 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 × cxp 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: xpssres 4982 imainrect 5116 cnvssrndm 5192 txbasval 14587 |
| Copyright terms: Public domain | W3C validator |