ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12i GIF version

Theorem xpeq12i 4681
Description: Equality inference for cross product. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
xpeq12i.1 𝐴 = 𝐵
xpeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xpeq12i (𝐴 × 𝐶) = (𝐵 × 𝐷)

Proof of Theorem xpeq12i
StepHypRef Expression
1 xpeq12i.1 . 2 𝐴 = 𝐵
2 xpeq12i.2 . 2 𝐶 = 𝐷
3 xpeq12 4678 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3mp2an 426 1 (𝐴 × 𝐶) = (𝐵 × 𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1364   × cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-opab 4091  df-xp 4665
This theorem is referenced by:  xpssres  4977  imainrect  5111  cnvssrndm  5187  txbasval  14435
  Copyright terms: Public domain W3C validator