ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12i GIF version

Theorem xpeq12i 4561
Description: Equality inference for cross product. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
xpeq12i.1 𝐴 = 𝐵
xpeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xpeq12i (𝐴 × 𝐶) = (𝐵 × 𝐷)

Proof of Theorem xpeq12i
StepHypRef Expression
1 xpeq12i.1 . 2 𝐴 = 𝐵
2 xpeq12i.2 . 2 𝐶 = 𝐷
3 xpeq12 4558 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3mp2an 422 1 (𝐴 × 𝐶) = (𝐵 × 𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1331   × cxp 4537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-opab 3990  df-xp 4545
This theorem is referenced by:  xpssres  4854  imainrect  4984  cnvssrndm  5060  txbasval  12446
  Copyright terms: Public domain W3C validator