| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq12 | GIF version | ||
| Description: Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4732 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 2 | xpeq2 4733 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2282 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 × cxp 4716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: xpeq12i 4740 xpeq12d 4743 xpid11 4946 xp11m 5166 tapeq2 7435 pwsval 13319 txtopon 14930 txbasval 14935 ismet 15012 isxmet 15013 |
| Copyright terms: Public domain | W3C validator |