| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpeq12 | GIF version | ||
| Description: Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.) | 
| Ref | Expression | 
|---|---|
| xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpeq1 4677 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 2 | xpeq2 4678 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2249 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: xpeq12i 4685 xpeq12d 4688 xpid11 4889 xp11m 5108 tapeq2 7320 txtopon 14498 txbasval 14503 ismet 14580 isxmet 14581 | 
| Copyright terms: Public domain | W3C validator |