Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvssrndm | GIF version |
Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
cnvssrndm | ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4989 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 5131 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 4622 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | dfdm4 4803 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | 4, 5 | xpeq12i 4633 | . 2 ⊢ (ran 𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) |
7 | 3, 6 | sseqtrri 3182 | 1 ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3121 × cxp 4609 ◡ccnv 4610 dom cdm 4611 ran crn 4612 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |