| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvssrndm | GIF version | ||
| Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| cnvssrndm | ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5061 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 5204 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
| 4 | df-rn 4687 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | dfdm4 4871 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | 4, 5 | xpeq12i 4698 | . 2 ⊢ (ran 𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) |
| 7 | 3, 6 | sseqtrri 3228 | 1 ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3166 × cxp 4674 ◡ccnv 4675 dom cdm 4676 ran crn 4677 Rel wrel 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-cnv 4684 df-dm 4686 df-rn 4687 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |