| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnvssrndm | GIF version | ||
| Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| cnvssrndm | ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relcnv 5047 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 5190 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) | 
| 4 | df-rn 4674 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | dfdm4 4858 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | 4, 5 | xpeq12i 4685 | . 2 ⊢ (ran 𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) | 
| 7 | 3, 6 | sseqtrri 3218 | 1 ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ⊆ wss 3157 × cxp 4661 ◡ccnv 4662 dom cdm 4663 ran crn 4664 Rel wrel 4668 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |