ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainrect GIF version

Theorem imainrect 4984
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
imainrect ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)

Proof of Theorem imainrect
StepHypRef Expression
1 df-res 4551 . . 3 ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌) = ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
21rneqi 4767 . 2 ran ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
3 df-ima 4552 . 2 ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌)
4 df-ima 4552 . . . . 5 (𝐺 “ (𝑌𝐴)) = ran (𝐺 ↾ (𝑌𝐴))
5 df-res 4551 . . . . . 6 (𝐺 ↾ (𝑌𝐴)) = (𝐺 ∩ ((𝑌𝐴) × V))
65rneqi 4767 . . . . 5 ran (𝐺 ↾ (𝑌𝐴)) = ran (𝐺 ∩ ((𝑌𝐴) × V))
74, 6eqtri 2160 . . . 4 (𝐺 “ (𝑌𝐴)) = ran (𝐺 ∩ ((𝑌𝐴) × V))
87ineq1i 3273 . . 3 ((𝐺 “ (𝑌𝐴)) ∩ 𝐵) = (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
9 cnvin 4946 . . . . . 6 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
10 inxp 4673 . . . . . . . . . 10 ((𝐴 × V) ∩ (V × 𝐵)) = ((𝐴 ∩ V) × (V ∩ 𝐵))
11 inv1 3399 . . . . . . . . . . 11 (𝐴 ∩ V) = 𝐴
12 incom 3268 . . . . . . . . . . . 12 (V ∩ 𝐵) = (𝐵 ∩ V)
13 inv1 3399 . . . . . . . . . . . 12 (𝐵 ∩ V) = 𝐵
1412, 13eqtri 2160 . . . . . . . . . . 11 (V ∩ 𝐵) = 𝐵
1511, 14xpeq12i 4561 . . . . . . . . . 10 ((𝐴 ∩ V) × (V ∩ 𝐵)) = (𝐴 × 𝐵)
1610, 15eqtr2i 2161 . . . . . . . . 9 (𝐴 × 𝐵) = ((𝐴 × V) ∩ (V × 𝐵))
1716ineq2i 3274 . . . . . . . 8 ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
18 in32 3288 . . . . . . . 8 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × 𝐵))
19 xpindir 4675 . . . . . . . . . . . 12 ((𝑌𝐴) × V) = ((𝑌 × V) ∩ (𝐴 × V))
2019ineq2i 3274 . . . . . . . . . . 11 (𝐺 ∩ ((𝑌𝐴) × V)) = (𝐺 ∩ ((𝑌 × V) ∩ (𝐴 × V)))
21 inass 3286 . . . . . . . . . . 11 ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) = (𝐺 ∩ ((𝑌 × V) ∩ (𝐴 × V)))
2220, 21eqtr4i 2163 . . . . . . . . . 10 (𝐺 ∩ ((𝑌𝐴) × V)) = ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V))
2322ineq1i 3273 . . . . . . . . 9 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = (((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) ∩ (V × 𝐵))
24 inass 3286 . . . . . . . . 9 (((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
2523, 24eqtri 2160 . . . . . . . 8 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
2617, 18, 253eqtr4i 2170 . . . . . . 7 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
2726cnveqi 4714 . . . . . 6 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
28 df-res 4551 . . . . . . 7 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (𝐵 × V))
29 cnvxp 4957 . . . . . . . 8 (V × 𝐵) = (𝐵 × V)
3029ineq2i 3274 . . . . . . 7 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (𝐵 × V))
3128, 30eqtr4i 2163 . . . . . 6 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
329, 27, 313eqtr4ri 2171 . . . . 5 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
3332dmeqi 4740 . . . 4 dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = dom ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
34 incom 3268 . . . . 5 (𝐵 ∩ dom (𝐺 ∩ ((𝑌𝐴) × V))) = (dom (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
35 dmres 4840 . . . . 5 dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = (𝐵 ∩ dom (𝐺 ∩ ((𝑌𝐴) × V)))
36 df-rn 4550 . . . . . 6 ran (𝐺 ∩ ((𝑌𝐴) × V)) = dom (𝐺 ∩ ((𝑌𝐴) × V))
3736ineq1i 3273 . . . . 5 (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵) = (dom (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
3834, 35, 373eqtr4ri 2171 . . . 4 (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵) = dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵)
39 df-rn 4550 . . . 4 ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = dom ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
4033, 38, 393eqtr4ri 2171 . . 3 ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
418, 40eqtr4i 2163 . 2 ((𝐺 “ (𝑌𝐴)) ∩ 𝐵) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
422, 3, 413eqtr4i 2170 1 ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1331  Vcvv 2686  cin 3070   × cxp 4537  ccnv 4538  dom cdm 4539  ran crn 4540  cres 4541  cima 4542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552
This theorem is referenced by:  ecinxp  6504
  Copyright terms: Public domain W3C validator