ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainrect GIF version

Theorem imainrect 5133
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
imainrect ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)

Proof of Theorem imainrect
StepHypRef Expression
1 df-res 4691 . . 3 ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌) = ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
21rneqi 4911 . 2 ran ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
3 df-ima 4692 . 2 ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌)
4 df-ima 4692 . . . . 5 (𝐺 “ (𝑌𝐴)) = ran (𝐺 ↾ (𝑌𝐴))
5 df-res 4691 . . . . . 6 (𝐺 ↾ (𝑌𝐴)) = (𝐺 ∩ ((𝑌𝐴) × V))
65rneqi 4911 . . . . 5 ran (𝐺 ↾ (𝑌𝐴)) = ran (𝐺 ∩ ((𝑌𝐴) × V))
74, 6eqtri 2227 . . . 4 (𝐺 “ (𝑌𝐴)) = ran (𝐺 ∩ ((𝑌𝐴) × V))
87ineq1i 3371 . . 3 ((𝐺 “ (𝑌𝐴)) ∩ 𝐵) = (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
9 cnvin 5095 . . . . . 6 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
10 inxp 4816 . . . . . . . . . 10 ((𝐴 × V) ∩ (V × 𝐵)) = ((𝐴 ∩ V) × (V ∩ 𝐵))
11 inv1 3498 . . . . . . . . . . 11 (𝐴 ∩ V) = 𝐴
12 incom 3366 . . . . . . . . . . . 12 (V ∩ 𝐵) = (𝐵 ∩ V)
13 inv1 3498 . . . . . . . . . . . 12 (𝐵 ∩ V) = 𝐵
1412, 13eqtri 2227 . . . . . . . . . . 11 (V ∩ 𝐵) = 𝐵
1511, 14xpeq12i 4701 . . . . . . . . . 10 ((𝐴 ∩ V) × (V ∩ 𝐵)) = (𝐴 × 𝐵)
1610, 15eqtr2i 2228 . . . . . . . . 9 (𝐴 × 𝐵) = ((𝐴 × V) ∩ (V × 𝐵))
1716ineq2i 3372 . . . . . . . 8 ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
18 in32 3386 . . . . . . . 8 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × 𝐵))
19 xpindir 4818 . . . . . . . . . . . 12 ((𝑌𝐴) × V) = ((𝑌 × V) ∩ (𝐴 × V))
2019ineq2i 3372 . . . . . . . . . . 11 (𝐺 ∩ ((𝑌𝐴) × V)) = (𝐺 ∩ ((𝑌 × V) ∩ (𝐴 × V)))
21 inass 3384 . . . . . . . . . . 11 ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) = (𝐺 ∩ ((𝑌 × V) ∩ (𝐴 × V)))
2220, 21eqtr4i 2230 . . . . . . . . . 10 (𝐺 ∩ ((𝑌𝐴) × V)) = ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V))
2322ineq1i 3371 . . . . . . . . 9 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = (((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) ∩ (V × 𝐵))
24 inass 3384 . . . . . . . . 9 (((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
2523, 24eqtri 2227 . . . . . . . 8 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
2617, 18, 253eqtr4i 2237 . . . . . . 7 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
2726cnveqi 4857 . . . . . 6 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
28 df-res 4691 . . . . . . 7 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (𝐵 × V))
29 cnvxp 5106 . . . . . . . 8 (V × 𝐵) = (𝐵 × V)
3029ineq2i 3372 . . . . . . 7 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (𝐵 × V))
3128, 30eqtr4i 2230 . . . . . 6 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
329, 27, 313eqtr4ri 2238 . . . . 5 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
3332dmeqi 4884 . . . 4 dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = dom ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
34 incom 3366 . . . . 5 (𝐵 ∩ dom (𝐺 ∩ ((𝑌𝐴) × V))) = (dom (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
35 dmres 4985 . . . . 5 dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = (𝐵 ∩ dom (𝐺 ∩ ((𝑌𝐴) × V)))
36 df-rn 4690 . . . . . 6 ran (𝐺 ∩ ((𝑌𝐴) × V)) = dom (𝐺 ∩ ((𝑌𝐴) × V))
3736ineq1i 3371 . . . . 5 (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵) = (dom (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
3834, 35, 373eqtr4ri 2238 . . . 4 (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵) = dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵)
39 df-rn 4690 . . . 4 ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = dom ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
4033, 38, 393eqtr4ri 2238 . . 3 ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
418, 40eqtr4i 2230 . 2 ((𝐺 “ (𝑌𝐴)) ∩ 𝐵) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
422, 3, 413eqtr4i 2237 1 ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  Vcvv 2773  cin 3166   × cxp 4677  ccnv 4678  dom cdm 4679  ran crn 4680  cres 4681  cima 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692
This theorem is referenced by:  ecinxp  6704
  Copyright terms: Public domain W3C validator