ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainrect GIF version

Theorem imainrect 4863
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
imainrect ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)

Proof of Theorem imainrect
StepHypRef Expression
1 df-res 4440 . . 3 ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌) = ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
21rneqi 4651 . 2 ran ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
3 df-ima 4441 . 2 ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ↾ 𝑌)
4 df-ima 4441 . . . . 5 (𝐺 “ (𝑌𝐴)) = ran (𝐺 ↾ (𝑌𝐴))
5 df-res 4440 . . . . . 6 (𝐺 ↾ (𝑌𝐴)) = (𝐺 ∩ ((𝑌𝐴) × V))
65rneqi 4651 . . . . 5 ran (𝐺 ↾ (𝑌𝐴)) = ran (𝐺 ∩ ((𝑌𝐴) × V))
74, 6eqtri 2108 . . . 4 (𝐺 “ (𝑌𝐴)) = ran (𝐺 ∩ ((𝑌𝐴) × V))
87ineq1i 3195 . . 3 ((𝐺 “ (𝑌𝐴)) ∩ 𝐵) = (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
9 cnvin 4826 . . . . . 6 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
10 inxp 4558 . . . . . . . . . 10 ((𝐴 × V) ∩ (V × 𝐵)) = ((𝐴 ∩ V) × (V ∩ 𝐵))
11 inv1 3316 . . . . . . . . . . 11 (𝐴 ∩ V) = 𝐴
12 incom 3190 . . . . . . . . . . . 12 (V ∩ 𝐵) = (𝐵 ∩ V)
13 inv1 3316 . . . . . . . . . . . 12 (𝐵 ∩ V) = 𝐵
1412, 13eqtri 2108 . . . . . . . . . . 11 (V ∩ 𝐵) = 𝐵
1511, 14xpeq12i 4450 . . . . . . . . . 10 ((𝐴 ∩ V) × (V ∩ 𝐵)) = (𝐴 × 𝐵)
1610, 15eqtr2i 2109 . . . . . . . . 9 (𝐴 × 𝐵) = ((𝐴 × V) ∩ (V × 𝐵))
1716ineq2i 3196 . . . . . . . 8 ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
18 in32 3210 . . . . . . . 8 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × 𝐵))
19 xpindir 4560 . . . . . . . . . . . 12 ((𝑌𝐴) × V) = ((𝑌 × V) ∩ (𝐴 × V))
2019ineq2i 3196 . . . . . . . . . . 11 (𝐺 ∩ ((𝑌𝐴) × V)) = (𝐺 ∩ ((𝑌 × V) ∩ (𝐴 × V)))
21 inass 3208 . . . . . . . . . . 11 ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) = (𝐺 ∩ ((𝑌 × V) ∩ (𝐴 × V)))
2220, 21eqtr4i 2111 . . . . . . . . . 10 (𝐺 ∩ ((𝑌𝐴) × V)) = ((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V))
2322ineq1i 3195 . . . . . . . . 9 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = (((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) ∩ (V × 𝐵))
24 inass 3208 . . . . . . . . 9 (((𝐺 ∩ (𝑌 × V)) ∩ (𝐴 × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
2523, 24eqtri 2108 . . . . . . . 8 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ (𝑌 × V)) ∩ ((𝐴 × V) ∩ (V × 𝐵)))
2617, 18, 253eqtr4i 2118 . . . . . . 7 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
2726cnveqi 4599 . . . . . 6 ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
28 df-res 4440 . . . . . . 7 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (𝐵 × V))
29 cnvxp 4837 . . . . . . . 8 (V × 𝐵) = (𝐵 × V)
3029ineq2i 3196 . . . . . . 7 ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵)) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (𝐵 × V))
3128, 30eqtr4i 2111 . . . . . 6 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ ((𝑌𝐴) × V)) ∩ (V × 𝐵))
329, 27, 313eqtr4ri 2119 . . . . 5 ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
3332dmeqi 4625 . . . 4 dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = dom ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
34 incom 3190 . . . . 5 (𝐵 ∩ dom (𝐺 ∩ ((𝑌𝐴) × V))) = (dom (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
35 dmres 4721 . . . . 5 dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵) = (𝐵 ∩ dom (𝐺 ∩ ((𝑌𝐴) × V)))
36 df-rn 4439 . . . . . 6 ran (𝐺 ∩ ((𝑌𝐴) × V)) = dom (𝐺 ∩ ((𝑌𝐴) × V))
3736ineq1i 3195 . . . . 5 (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵) = (dom (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
3834, 35, 373eqtr4ri 2119 . . . 4 (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵) = dom ((𝐺 ∩ ((𝑌𝐴) × V)) ↾ 𝐵)
39 df-rn 4439 . . . 4 ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = dom ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
4033, 38, 393eqtr4ri 2119 . . 3 ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V)) = (ran (𝐺 ∩ ((𝑌𝐴) × V)) ∩ 𝐵)
418, 40eqtr4i 2111 . 2 ((𝐺 “ (𝑌𝐴)) ∩ 𝐵) = ran ((𝐺 ∩ (𝐴 × 𝐵)) ∩ (𝑌 × V))
422, 3, 413eqtr4i 2118 1 ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1289  Vcvv 2619  cin 2996   × cxp 4426  ccnv 4427  dom cdm 4428  ran crn 4429  cres 4430  cima 4431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-rel 4435  df-cnv 4436  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441
This theorem is referenced by:  ecinxp  6347
  Copyright terms: Public domain W3C validator