Step | Hyp | Ref
| Expression |
1 | | eqid 2165 |
. . . 4
⊢ ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) |
2 | 1 | txbasex 12897 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V) |
3 | | bastg 12701 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (topGen‘𝑅)) |
4 | | bastg 12701 |
. . . . . 6
⊢ (𝑆 ∈ 𝑊 → 𝑆 ⊆ (topGen‘𝑆)) |
5 | | resmpo 5940 |
. . . . . 6
⊢ ((𝑅 ⊆ (topGen‘𝑅) ∧ 𝑆 ⊆ (topGen‘𝑆)) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
6 | 3, 4, 5 | syl2an 287 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
7 | | resss 4908 |
. . . . 5
⊢ ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
8 | 6, 7 | eqsstrrdi 3195 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
9 | | rnss 4834 |
. . . 4
⊢ ((𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
10 | 8, 9 | syl 14 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
11 | | eltg3 12697 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → (𝑢 ∈ (topGen‘𝑅) ↔ ∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚))) |
12 | | eltg3 12697 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝑊 → (𝑣 ∈ (topGen‘𝑆) ↔ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛))) |
13 | 11, 12 | bi2anan9 596 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) ↔ (∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)))) |
14 | | exdistrv 1898 |
. . . . . . . . 9
⊢
(∃𝑚∃𝑛((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) ↔ (∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛))) |
15 | | an4 576 |
. . . . . . . . . . 11
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) ↔ ((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛))) |
16 | | uniiun 3919 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑚 =
∪ 𝑥 ∈ 𝑚 𝑥 |
17 | | uniiun 3919 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑛 =
∪ 𝑦 ∈ 𝑛 𝑦 |
18 | 16, 17 | xpeq12i 4626 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑚
× ∪ 𝑛) = (∪
𝑥 ∈ 𝑚 𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) |
19 | | xpiundir 4663 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑥 ∈ 𝑚 𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑥 ∈ 𝑚 (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) |
20 | | xpiundi 4662 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 × ∪ 𝑦 ∈ 𝑛 𝑦) = ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
21 | 20 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑚 → (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦)) |
22 | 21 | iuneq2i 3884 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑥 ∈ 𝑚 (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
23 | 18, 19, 22 | 3eqtri 2190 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑚
× ∪ 𝑛) = ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
24 | | txvalex 12894 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
25 | 24 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → (𝑅 ×t 𝑆) ∈ V) |
26 | 24 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → (𝑅 ×t 𝑆) ∈ V) |
27 | | ssel2 3137 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ⊆ 𝑅 ∧ 𝑥 ∈ 𝑚) → 𝑥 ∈ 𝑅) |
28 | | ssel2 3137 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ⊆ 𝑆 ∧ 𝑦 ∈ 𝑛) → 𝑦 ∈ 𝑆) |
29 | 27, 28 | anim12i 336 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑥 ∈ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑦 ∈ 𝑛)) → (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) |
30 | 29 | an4s 578 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛)) → (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) |
31 | | txopn 12905 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
32 | 30, 31 | sylan2 284 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ ((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛))) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
33 | 32 | anassrs 398 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
34 | 33 | anassrs 398 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) ∧ 𝑦 ∈ 𝑛) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
35 | 34 | ralrimiva 2539 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∀𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
36 | | tgiun 12713 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
37 | 26, 35, 36 | syl2anc 409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∪
𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
38 | | tgidm 12714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V →
(topGen‘(topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
39 | 2, 38 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(topGen‘ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
40 | 1 | txval 12895 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
41 | 40 | fveq2d 5490 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (topGen‘(topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))))) |
42 | 39, 41, 40 | 3eqtr4d 2208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
43 | 42 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
44 | 43 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
45 | 37, 44 | eleqtrd 2245 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∪
𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
46 | 45 | ralrimiva 2539 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∀𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
47 | | tgiun 12713 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
48 | 25, 46, 47 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
49 | 48, 43 | eleqtrd 2245 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
50 | 23, 49 | eqeltrid 2253 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → (∪
𝑚 × ∪ 𝑛)
∈ (𝑅
×t 𝑆)) |
51 | | xpeq12 4623 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = ∪
𝑚 ∧ 𝑣 = ∪ 𝑛) → (𝑢 × 𝑣) = (∪ 𝑚 × ∪ 𝑛)) |
52 | 51 | eleq1d 2235 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = ∪
𝑚 ∧ 𝑣 = ∪ 𝑛) → ((𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ (∪ 𝑚 × ∪ 𝑛)
∈ (𝑅
×t 𝑆))) |
53 | 50, 52 | syl5ibrcom 156 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ((𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
54 | 53 | expimpd 361 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
55 | 15, 54 | syl5bi 151 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
56 | 55 | exlimdvv 1885 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∃𝑚∃𝑛((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
57 | 14, 56 | syl5bir 152 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
58 | 13, 57 | sylbid 149 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
59 | 58 | ralrimivv 2547 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∀𝑢 ∈ (topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)) |
60 | | eqid 2165 |
. . . . . . 7
⊢ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
61 | 60 | fmpo 6169 |
. . . . . 6
⊢
(∀𝑢 ∈
(topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆)) |
62 | 59, 61 | sylib 121 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆)) |
63 | 62 | frnd 5347 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (𝑅 ×t 𝑆)) |
64 | 63, 40 | sseqtrd 3180 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
65 | | 2basgeng 12722 |
. . 3
⊢ ((ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V ∧ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ∧ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
66 | 2, 10, 64, 65 | syl3anc 1228 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
67 | | tgvalex 12690 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (topGen‘𝑅) ∈ V) |
68 | | tgvalex 12690 |
. . 3
⊢ (𝑆 ∈ 𝑊 → (topGen‘𝑆) ∈ V) |
69 | | eqid 2165 |
. . . 4
⊢ ran
(𝑢 ∈
(topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
70 | 69 | txval 12895 |
. . 3
⊢
(((topGen‘𝑅)
∈ V ∧ (topGen‘𝑆) ∈ V) → ((topGen‘𝑅) ×t
(topGen‘𝑆)) =
(topGen‘ran (𝑢 ∈
(topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
71 | 67, 68, 70 | syl2an 287 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
72 | 66, 40, 71 | 3eqtr4rd 2209 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆)) |