| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . . 4
⊢ ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) |
| 2 | 1 | txbasex 14493 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V) |
| 3 | | bastg 14297 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (topGen‘𝑅)) |
| 4 | | bastg 14297 |
. . . . . 6
⊢ (𝑆 ∈ 𝑊 → 𝑆 ⊆ (topGen‘𝑆)) |
| 5 | | resmpo 6020 |
. . . . . 6
⊢ ((𝑅 ⊆ (topGen‘𝑅) ∧ 𝑆 ⊆ (topGen‘𝑆)) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
| 7 | | resss 4970 |
. . . . 5
⊢ ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
| 8 | 6, 7 | eqsstrrdi 3236 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
| 9 | | rnss 4896 |
. . . 4
⊢ ((𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
| 10 | 8, 9 | syl 14 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
| 11 | | eltg3 14293 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → (𝑢 ∈ (topGen‘𝑅) ↔ ∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚))) |
| 12 | | eltg3 14293 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝑊 → (𝑣 ∈ (topGen‘𝑆) ↔ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛))) |
| 13 | 11, 12 | bi2anan9 606 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) ↔ (∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)))) |
| 14 | | exdistrv 1925 |
. . . . . . . . 9
⊢
(∃𝑚∃𝑛((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) ↔ (∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛))) |
| 15 | | an4 586 |
. . . . . . . . . . 11
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) ↔ ((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛))) |
| 16 | | uniiun 3970 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑚 =
∪ 𝑥 ∈ 𝑚 𝑥 |
| 17 | | uniiun 3970 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑛 =
∪ 𝑦 ∈ 𝑛 𝑦 |
| 18 | 16, 17 | xpeq12i 4685 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑚
× ∪ 𝑛) = (∪
𝑥 ∈ 𝑚 𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) |
| 19 | | xpiundir 4722 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑥 ∈ 𝑚 𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑥 ∈ 𝑚 (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) |
| 20 | | xpiundi 4721 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 × ∪ 𝑦 ∈ 𝑛 𝑦) = ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
| 21 | 20 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑚 → (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦)) |
| 22 | 21 | iuneq2i 3934 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑥 ∈ 𝑚 (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
| 23 | 18, 19, 22 | 3eqtri 2221 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑚
× ∪ 𝑛) = ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
| 24 | | txvalex 14490 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
| 25 | 24 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → (𝑅 ×t 𝑆) ∈ V) |
| 26 | 24 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → (𝑅 ×t 𝑆) ∈ V) |
| 27 | | ssel2 3178 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ⊆ 𝑅 ∧ 𝑥 ∈ 𝑚) → 𝑥 ∈ 𝑅) |
| 28 | | ssel2 3178 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ⊆ 𝑆 ∧ 𝑦 ∈ 𝑛) → 𝑦 ∈ 𝑆) |
| 29 | 27, 28 | anim12i 338 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑥 ∈ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑦 ∈ 𝑛)) → (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) |
| 30 | 29 | an4s 588 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛)) → (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) |
| 31 | | txopn 14501 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
| 32 | 30, 31 | sylan2 286 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ ((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛))) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
| 33 | 32 | anassrs 400 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
| 34 | 33 | anassrs 400 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) ∧ 𝑦 ∈ 𝑛) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
| 35 | 34 | ralrimiva 2570 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∀𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
| 36 | | tgiun 14309 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
| 37 | 26, 35, 36 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∪
𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
| 38 | | tgidm 14310 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V →
(topGen‘(topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 39 | 2, 38 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(topGen‘ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 40 | 1 | txval 14491 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 41 | 40 | fveq2d 5562 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (topGen‘(topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))))) |
| 42 | 39, 41, 40 | 3eqtr4d 2239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
| 43 | 42 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
| 44 | 43 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
| 45 | 37, 44 | eleqtrd 2275 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∪
𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
| 46 | 45 | ralrimiva 2570 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∀𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
| 47 | | tgiun 14309 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
| 48 | 25, 46, 47 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
| 49 | 48, 43 | eleqtrd 2275 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
| 50 | 23, 49 | eqeltrid 2283 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → (∪
𝑚 × ∪ 𝑛)
∈ (𝑅
×t 𝑆)) |
| 51 | | xpeq12 4682 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = ∪
𝑚 ∧ 𝑣 = ∪ 𝑛) → (𝑢 × 𝑣) = (∪ 𝑚 × ∪ 𝑛)) |
| 52 | 51 | eleq1d 2265 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = ∪
𝑚 ∧ 𝑣 = ∪ 𝑛) → ((𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ (∪ 𝑚 × ∪ 𝑛)
∈ (𝑅
×t 𝑆))) |
| 53 | 50, 52 | syl5ibrcom 157 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ((𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
| 54 | 53 | expimpd 363 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
| 55 | 15, 54 | biimtrid 152 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
| 56 | 55 | exlimdvv 1912 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∃𝑚∃𝑛((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
| 57 | 14, 56 | biimtrrid 153 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
| 58 | 13, 57 | sylbid 150 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
| 59 | 58 | ralrimivv 2578 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∀𝑢 ∈ (topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)) |
| 60 | | eqid 2196 |
. . . . . . 7
⊢ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
| 61 | 60 | fmpo 6259 |
. . . . . 6
⊢
(∀𝑢 ∈
(topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆)) |
| 62 | 59, 61 | sylib 122 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆)) |
| 63 | 62 | frnd 5417 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (𝑅 ×t 𝑆)) |
| 64 | 63, 40 | sseqtrd 3221 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 65 | | 2basgeng 14318 |
. . 3
⊢ ((ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V ∧ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ∧ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
| 66 | 2, 10, 64, 65 | syl3anc 1249 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
| 67 | | tgvalex 12934 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (topGen‘𝑅) ∈ V) |
| 68 | | tgvalex 12934 |
. . 3
⊢ (𝑆 ∈ 𝑊 → (topGen‘𝑆) ∈ V) |
| 69 | | eqid 2196 |
. . . 4
⊢ ran
(𝑢 ∈
(topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
| 70 | 69 | txval 14491 |
. . 3
⊢
(((topGen‘𝑅)
∈ V ∧ (topGen‘𝑆) ∈ V) → ((topGen‘𝑅) ×t
(topGen‘𝑆)) =
(topGen‘ran (𝑢 ∈
(topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
| 71 | 67, 68, 70 | syl2an 289 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
| 72 | 66, 40, 71 | 3eqtr4rd 2240 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆)) |