ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpssres GIF version

Theorem xpssres 5002
Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 4694 . . 3 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
2 inxp 4819 . . 3 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
3 incom 3369 . . . 4 (𝐴𝐶) = (𝐶𝐴)
4 inv1 3501 . . . 4 (𝐵 ∩ V) = 𝐵
53, 4xpeq12i 4704 . . 3 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐶𝐴) × 𝐵)
61, 2, 53eqtri 2231 . 2 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐶𝐴) × 𝐵)
7 df-ss 3183 . . . 4 (𝐶𝐴 ↔ (𝐶𝐴) = 𝐶)
87biimpi 120 . . 3 (𝐶𝐴 → (𝐶𝐴) = 𝐶)
98xpeq1d 4705 . 2 (𝐶𝐴 → ((𝐶𝐴) × 𝐵) = (𝐶 × 𝐵))
106, 9eqtrid 2251 1 (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  Vcvv 2773  cin 3169  wss 3170   × cxp 4680  cres 4684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-opab 4113  df-xp 4688  df-rel 4689  df-res 4694
This theorem is referenced by:  cnconst2  14775
  Copyright terms: Public domain W3C validator