ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpssres GIF version

Theorem xpssres 5036
Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 4728 . . 3 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
2 inxp 4853 . . 3 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
3 incom 3396 . . . 4 (𝐴𝐶) = (𝐶𝐴)
4 inv1 3528 . . . 4 (𝐵 ∩ V) = 𝐵
53, 4xpeq12i 4738 . . 3 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐶𝐴) × 𝐵)
61, 2, 53eqtri 2254 . 2 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐶𝐴) × 𝐵)
7 df-ss 3210 . . . 4 (𝐶𝐴 ↔ (𝐶𝐴) = 𝐶)
87biimpi 120 . . 3 (𝐶𝐴 → (𝐶𝐴) = 𝐶)
98xpeq1d 4739 . 2 (𝐶𝐴 → ((𝐶𝐴) × 𝐵) = (𝐶 × 𝐵))
106, 9eqtrid 2274 1 (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  Vcvv 2799  cin 3196  wss 3197   × cxp 4714  cres 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4722  df-rel 4723  df-res 4728
This theorem is referenced by:  cnconst2  14892
  Copyright terms: Public domain W3C validator