Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpssres | GIF version |
Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
xpssres | ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4616 | . . 3 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
2 | inxp 4738 | . . 3 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
3 | incom 3314 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
4 | inv1 3445 | . . . 4 ⊢ (𝐵 ∩ V) = 𝐵 | |
5 | 3, 4 | xpeq12i 4626 | . . 3 ⊢ ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ((𝐶 ∩ 𝐴) × 𝐵) |
6 | 1, 2, 5 | 3eqtri 2190 | . 2 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐶 ∩ 𝐴) × 𝐵) |
7 | df-ss 3129 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) | |
8 | 7 | biimpi 119 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐶 ∩ 𝐴) = 𝐶) |
9 | 8 | xpeq1d 4627 | . 2 ⊢ (𝐶 ⊆ 𝐴 → ((𝐶 ∩ 𝐴) × 𝐵) = (𝐶 × 𝐵)) |
10 | 6, 9 | syl5eq 2211 | 1 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 Vcvv 2726 ∩ cin 3115 ⊆ wss 3116 × cxp 4602 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 df-res 4616 |
This theorem is referenced by: cnconst2 12873 |
Copyright terms: Public domain | W3C validator |