| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpssres | GIF version | ||
| Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| xpssres | ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4675 | . . 3 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
| 2 | inxp 4800 | . . 3 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
| 3 | incom 3355 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
| 4 | inv1 3487 | . . . 4 ⊢ (𝐵 ∩ V) = 𝐵 | |
| 5 | 3, 4 | xpeq12i 4685 | . . 3 ⊢ ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ((𝐶 ∩ 𝐴) × 𝐵) |
| 6 | 1, 2, 5 | 3eqtri 2221 | . 2 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐶 ∩ 𝐴) × 𝐵) |
| 7 | df-ss 3170 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) | |
| 8 | 7 | biimpi 120 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐶 ∩ 𝐴) = 𝐶) |
| 9 | 8 | xpeq1d 4686 | . 2 ⊢ (𝐶 ⊆ 𝐴 → ((𝐶 ∩ 𝐴) × 𝐵) = (𝐶 × 𝐵)) |
| 10 | 6, 9 | eqtrid 2241 | 1 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 × cxp 4661 ↾ cres 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 df-rel 4670 df-res 4675 |
| This theorem is referenced by: cnconst2 14469 |
| Copyright terms: Public domain | W3C validator |