ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpssres GIF version

Theorem xpssres 4919
Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 4616 . . 3 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
2 inxp 4738 . . 3 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
3 incom 3314 . . . 4 (𝐴𝐶) = (𝐶𝐴)
4 inv1 3445 . . . 4 (𝐵 ∩ V) = 𝐵
53, 4xpeq12i 4626 . . 3 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐶𝐴) × 𝐵)
61, 2, 53eqtri 2190 . 2 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐶𝐴) × 𝐵)
7 df-ss 3129 . . . 4 (𝐶𝐴 ↔ (𝐶𝐴) = 𝐶)
87biimpi 119 . . 3 (𝐶𝐴 → (𝐶𝐴) = 𝐶)
98xpeq1d 4627 . 2 (𝐶𝐴 → ((𝐶𝐴) × 𝐵) = (𝐶 × 𝐵))
106, 9syl5eq 2211 1 (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  Vcvv 2726  cin 3115  wss 3116   × cxp 4602  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by:  cnconst2  12873
  Copyright terms: Public domain W3C validator