ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xp GIF version

Definition df-xp 4669
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-xp (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Detailed syntax breakdown of Definition df-xp
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cxp 4661 . 2 class (𝐴 × 𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1363 . . . . 5 class 𝑥
65, 1wcel 2167 . . . 4 wff 𝑥𝐴
7 vy . . . . . 6 setvar 𝑦
87cv 1363 . . . . 5 class 𝑦
98, 2wcel 2167 . . . 4 wff 𝑦𝐵
106, 9wa 104 . . 3 wff (𝑥𝐴𝑦𝐵)
1110, 4, 7copab 4093 . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
123, 11wceq 1364 1 wff (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Colors of variables: wff set class
This definition is referenced by:  xpeq1  4677  xpeq2  4678  elxpi  4679  elxp  4680  nfxp  4690  fconstmpt  4710  brab2a  4716  xpundi  4719  xpundir  4720  opabssxp  4737  csbxpg  4744  xpss12  4770  relopabiv  4789  inxp  4800  dmxpm  4886  dmxpid  4887  resopab  4990  cnvxp  5088  xpcom  5216  dfxp3  6252  dmaddpq  7446  dmmulpq  7447  enq0enq  7498  npsspw  7538  shftfvalg  10983  shftfval  10986  eqgfval  13352  reldvdsrsrg  13648  dvdsrvald  13649  dvdsrex  13654  lgsquadlem3  15320
  Copyright terms: Public domain W3C validator