Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-xp | GIF version |
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 4602 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1342 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2136 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1342 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 2136 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 103 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 4042 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1343 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff set class |
This definition is referenced by: xpeq1 4618 xpeq2 4619 elxpi 4620 elxp 4621 nfxp 4631 fconstmpt 4651 brab2a 4657 xpundi 4660 xpundir 4661 opabssxp 4678 csbxpg 4685 xpss12 4711 inxp 4738 dmxpm 4824 dmxpid 4825 resopab 4928 cnvxp 5022 xpcom 5150 dfxp3 6162 dmaddpq 7320 dmmulpq 7321 enq0enq 7372 npsspw 7412 shftfvalg 10760 shftfval 10763 |
Copyright terms: Public domain | W3C validator |