![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-xp | GIF version |
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 4657 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1363 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2164 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1363 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 2164 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 4089 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1364 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff set class |
This definition is referenced by: xpeq1 4673 xpeq2 4674 elxpi 4675 elxp 4676 nfxp 4686 fconstmpt 4706 brab2a 4712 xpundi 4715 xpundir 4716 opabssxp 4733 csbxpg 4740 xpss12 4766 relopabiv 4785 inxp 4796 dmxpm 4882 dmxpid 4883 resopab 4986 cnvxp 5084 xpcom 5212 dfxp3 6247 dmaddpq 7439 dmmulpq 7440 enq0enq 7491 npsspw 7531 shftfvalg 10962 shftfval 10965 eqgfval 13292 reldvdsrsrg 13588 dvdsrvald 13589 dvdsrex 13594 |
Copyright terms: Public domain | W3C validator |