| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xp | GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 4717 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1394 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2200 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1394 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2200 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 4144 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1395 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: xpeq1 4733 xpeq2 4734 elxpi 4735 elxp 4736 nfxp 4746 fconstmpt 4766 brab2a 4772 xpundi 4775 xpundir 4776 opabssxp 4793 csbxpg 4800 xpss12 4826 relopabiv 4845 inxp 4856 dmxpm 4944 dmxpid 4945 resopab 5049 cnvxp 5147 xpcom 5275 dfxp3 6346 dmaddpq 7574 dmmulpq 7575 enq0enq 7626 npsspw 7666 shftfvalg 11337 shftfval 11340 eqgfval 13767 dvdsrvald 14065 dvdsrex 14070 lgsquadlem3 15766 |
| Copyright terms: Public domain | W3C validator |