| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xp | GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 4677 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1372 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2177 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1372 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2177 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 4108 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1373 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: xpeq1 4693 xpeq2 4694 elxpi 4695 elxp 4696 nfxp 4706 fconstmpt 4726 brab2a 4732 xpundi 4735 xpundir 4736 opabssxp 4753 csbxpg 4760 xpss12 4786 relopabiv 4805 inxp 4816 dmxpm 4903 dmxpid 4904 resopab 5008 cnvxp 5106 xpcom 5234 dfxp3 6287 dmaddpq 7499 dmmulpq 7500 enq0enq 7551 npsspw 7591 shftfvalg 11173 shftfval 11176 eqgfval 13602 reldvdsrsrg 13898 dvdsrvald 13899 dvdsrex 13904 lgsquadlem3 15600 |
| Copyright terms: Public domain | W3C validator |