![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-xp | GIF version |
Description: Define the cross product of two classes. Definition 9.11 of [Quine] p. 64. For example, ( { 1 , 5 } × { 2 , 7 } ) = ( { 〈 1 , 2 〉, 〈 1 , 7 〉 } ∪ { 〈 5 , 2 〉, 〈 5 , 7 〉 } ) . Another example is that the set of rational numbers are defined in using the cross-product ( Z × N ) ; the left- and right-hand sides of the cross-product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 4497 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1313 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 1463 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1313 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 1463 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 103 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 3948 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1314 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff set class |
This definition is referenced by: xpeq1 4513 xpeq2 4514 elxpi 4515 elxp 4516 nfxp 4526 fconstmpt 4546 brab2a 4552 xpundi 4555 xpundir 4556 opabssxp 4573 csbxpg 4580 xpss12 4606 inxp 4633 dmxpm 4719 dmxpid 4720 resopab 4821 cnvxp 4915 xpcom 5043 dfxp3 6046 dmaddpq 7132 dmmulpq 7133 enq0enq 7184 npsspw 7224 shftfvalg 10480 shftfval 10483 |
Copyright terms: Public domain | W3C validator |