| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xp | GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 4694 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1374 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2180 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1374 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2180 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 4123 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1375 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: xpeq1 4710 xpeq2 4711 elxpi 4712 elxp 4713 nfxp 4723 fconstmpt 4743 brab2a 4749 xpundi 4752 xpundir 4753 opabssxp 4770 csbxpg 4777 xpss12 4803 relopabiv 4822 inxp 4833 dmxpm 4920 dmxpid 4921 resopab 5025 cnvxp 5123 xpcom 5251 dfxp3 6310 dmaddpq 7534 dmmulpq 7535 enq0enq 7586 npsspw 7626 shftfvalg 11295 shftfval 11298 eqgfval 13725 reldvdsrsrg 14021 dvdsrvald 14022 dvdsrex 14027 lgsquadlem3 15723 |
| Copyright terms: Public domain | W3C validator |