ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xp GIF version

Definition df-xp 4666
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-xp (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Detailed syntax breakdown of Definition df-xp
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cxp 4658 . 2 class (𝐴 × 𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1363 . . . . 5 class 𝑥
65, 1wcel 2164 . . . 4 wff 𝑥𝐴
7 vy . . . . . 6 setvar 𝑦
87cv 1363 . . . . 5 class 𝑦
98, 2wcel 2164 . . . 4 wff 𝑦𝐵
106, 9wa 104 . . 3 wff (𝑥𝐴𝑦𝐵)
1110, 4, 7copab 4090 . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
123, 11wceq 1364 1 wff (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Colors of variables: wff set class
This definition is referenced by:  xpeq1  4674  xpeq2  4675  elxpi  4676  elxp  4677  nfxp  4687  fconstmpt  4707  brab2a  4713  xpundi  4716  xpundir  4717  opabssxp  4734  csbxpg  4741  xpss12  4767  relopabiv  4786  inxp  4797  dmxpm  4883  dmxpid  4884  resopab  4987  cnvxp  5085  xpcom  5213  dfxp3  6249  dmaddpq  7441  dmmulpq  7442  enq0enq  7493  npsspw  7533  shftfvalg  10965  shftfval  10968  eqgfval  13295  reldvdsrsrg  13591  dvdsrvald  13592  dvdsrex  13597  lgsquadlem3  15236
  Copyright terms: Public domain W3C validator