ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xp GIF version

Definition df-xp 4665
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-xp (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Detailed syntax breakdown of Definition df-xp
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cxp 4657 . 2 class (𝐴 × 𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1363 . . . . 5 class 𝑥
65, 1wcel 2164 . . . 4 wff 𝑥𝐴
7 vy . . . . . 6 setvar 𝑦
87cv 1363 . . . . 5 class 𝑦
98, 2wcel 2164 . . . 4 wff 𝑦𝐵
106, 9wa 104 . . 3 wff (𝑥𝐴𝑦𝐵)
1110, 4, 7copab 4089 . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
123, 11wceq 1364 1 wff (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Colors of variables: wff set class
This definition is referenced by:  xpeq1  4673  xpeq2  4674  elxpi  4675  elxp  4676  nfxp  4686  fconstmpt  4706  brab2a  4712  xpundi  4715  xpundir  4716  opabssxp  4733  csbxpg  4740  xpss12  4766  relopabiv  4785  inxp  4796  dmxpm  4882  dmxpid  4883  resopab  4986  cnvxp  5084  xpcom  5212  dfxp3  6247  dmaddpq  7439  dmmulpq  7440  enq0enq  7491  npsspw  7531  shftfvalg  10962  shftfval  10965  eqgfval  13292  reldvdsrsrg  13588  dvdsrvald  13589  dvdsrex  13594
  Copyright terms: Public domain W3C validator