| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xp | GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 4662 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1363 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2167 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 4094 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1364 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: xpeq1 4678 xpeq2 4679 elxpi 4680 elxp 4681 nfxp 4691 fconstmpt 4711 brab2a 4717 xpundi 4720 xpundir 4721 opabssxp 4738 csbxpg 4745 xpss12 4771 relopabiv 4790 inxp 4801 dmxpm 4887 dmxpid 4888 resopab 4991 cnvxp 5089 xpcom 5217 dfxp3 6261 dmaddpq 7463 dmmulpq 7464 enq0enq 7515 npsspw 7555 shftfvalg 11000 shftfval 11003 eqgfval 13428 reldvdsrsrg 13724 dvdsrvald 13725 dvdsrex 13730 lgsquadlem3 15404 |
| Copyright terms: Public domain | W3C validator |