ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xp GIF version

Definition df-xp 4610
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-xp (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Detailed syntax breakdown of Definition df-xp
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cxp 4602 . 2 class (𝐴 × 𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1342 . . . . 5 class 𝑥
65, 1wcel 2136 . . . 4 wff 𝑥𝐴
7 vy . . . . . 6 setvar 𝑦
87cv 1342 . . . . 5 class 𝑦
98, 2wcel 2136 . . . 4 wff 𝑦𝐵
106, 9wa 103 . . 3 wff (𝑥𝐴𝑦𝐵)
1110, 4, 7copab 4042 . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
123, 11wceq 1343 1 wff (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Colors of variables: wff set class
This definition is referenced by:  xpeq1  4618  xpeq2  4619  elxpi  4620  elxp  4621  nfxp  4631  fconstmpt  4651  brab2a  4657  xpundi  4660  xpundir  4661  opabssxp  4678  csbxpg  4685  xpss12  4711  inxp  4738  dmxpm  4824  dmxpid  4825  resopab  4928  cnvxp  5022  xpcom  5150  dfxp3  6162  dmaddpq  7320  dmmulpq  7321  enq0enq  7372  npsspw  7412  shftfvalg  10760  shftfval  10763
  Copyright terms: Public domain W3C validator