![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-xp | GIF version |
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 4658 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1363 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2164 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1363 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 2164 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 4090 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1364 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff set class |
This definition is referenced by: xpeq1 4674 xpeq2 4675 elxpi 4676 elxp 4677 nfxp 4687 fconstmpt 4707 brab2a 4713 xpundi 4716 xpundir 4717 opabssxp 4734 csbxpg 4741 xpss12 4767 relopabiv 4786 inxp 4797 dmxpm 4883 dmxpid 4884 resopab 4987 cnvxp 5085 xpcom 5213 dfxp3 6249 dmaddpq 7441 dmmulpq 7442 enq0enq 7493 npsspw 7533 shftfvalg 10965 shftfval 10968 eqgfval 13295 reldvdsrsrg 13591 dvdsrvald 13592 dvdsrex 13597 lgsquadlem3 15236 |
Copyright terms: Public domain | W3C validator |