| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-xp | GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) | 
| Ref | Expression | 
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 4661 | . 2 class (𝐴 × 𝐵) | 
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . 5 class 𝑥 | 
| 6 | 5, 1 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 | 
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1363 | . . . . 5 class 𝑦 | 
| 9 | 8, 2 | wcel 2167 | . . . 4 wff 𝑦 ∈ 𝐵 | 
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) | 
| 11 | 10, 4, 7 | copab 4093 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | 
| 12 | 3, 11 | wceq 1364 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | 
| Colors of variables: wff set class | 
| This definition is referenced by: xpeq1 4677 xpeq2 4678 elxpi 4679 elxp 4680 nfxp 4690 fconstmpt 4710 brab2a 4716 xpundi 4719 xpundir 4720 opabssxp 4737 csbxpg 4744 xpss12 4770 relopabiv 4789 inxp 4800 dmxpm 4886 dmxpid 4887 resopab 4990 cnvxp 5088 xpcom 5216 dfxp3 6252 dmaddpq 7446 dmmulpq 7447 enq0enq 7498 npsspw 7538 shftfvalg 10983 shftfval 10986 eqgfval 13352 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrex 13654 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |