MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cnALT Structured version   Visualization version   GIF version

Theorem 0cnALT 11475
Description: Alternate proof of 0cn 11232 which does not reference ax-1cn 11192. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0cnALT 0 ∈ ℂ

Proof of Theorem 0cnALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-icn 11193 . . 3 i ∈ ℂ
2 cnre 11237 . . 3 (i ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦)))
3 ax-rnegex 11205 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0)
4 readdcl 11217 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 + 𝑧) ∈ ℝ)
5 eleq1 2823 . . . . . . . 8 ((𝑥 + 𝑧) = 0 → ((𝑥 + 𝑧) ∈ ℝ ↔ 0 ∈ ℝ))
64, 5syl5ibcom 245 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 + 𝑧) = 0 → 0 ∈ ℝ))
76rexlimdva 3142 . . . . . 6 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0 → 0 ∈ ℝ))
83, 7mpd 15 . . . . 5 (𝑥 ∈ ℝ → 0 ∈ ℝ)
98adantr 480 . . . 4 ((𝑥 ∈ ℝ ∧ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦))) → 0 ∈ ℝ)
109rexlimiva 3134 . . 3 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦)) → 0 ∈ ℝ)
111, 2, 10mp2b 10 . 2 0 ∈ ℝ
1211recni 11254 1 0 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wrex 3061  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  ici 11136   + caddc 11137   · cmul 11139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-resscn 11191  ax-icn 11193  ax-addrcl 11195  ax-rnegex 11205  ax-cnre 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2728  df-clel 2810  df-rex 3062  df-ss 3948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator