![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cnALT | Structured version Visualization version GIF version |
Description: Alternate proof of 0cn 11282 which does not reference ax-1cn 11242. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0cnALT | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11243 | . . 3 ⊢ i ∈ ℂ | |
2 | cnre 11287 | . . 3 ⊢ (i ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦))) | |
3 | ax-rnegex 11255 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0) | |
4 | readdcl 11267 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 + 𝑧) ∈ ℝ) | |
5 | eleq1 2832 | . . . . . . . 8 ⊢ ((𝑥 + 𝑧) = 0 → ((𝑥 + 𝑧) ∈ ℝ ↔ 0 ∈ ℝ)) | |
6 | 4, 5 | syl5ibcom 245 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 + 𝑧) = 0 → 0 ∈ ℝ)) |
7 | 6 | rexlimdva 3161 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0 → 0 ∈ ℝ)) |
8 | 3, 7 | mpd 15 | . . . . 5 ⊢ (𝑥 ∈ ℝ → 0 ∈ ℝ) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦))) → 0 ∈ ℝ) |
10 | 9 | rexlimiva 3153 | . . 3 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦)) → 0 ∈ ℝ) |
11 | 1, 2, 10 | mp2b 10 | . 2 ⊢ 0 ∈ ℝ |
12 | 11 | recni 11304 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 ici 11186 + caddc 11187 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-icn 11243 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-rex 3077 df-ss 3993 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |