Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0cnALT | Structured version Visualization version GIF version |
Description: Alternate proof of 0cn 10967 which does not reference ax-1cn 10929. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0cnALT | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10930 | . . 3 ⊢ i ∈ ℂ | |
2 | cnre 10972 | . . 3 ⊢ (i ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦))) | |
3 | ax-rnegex 10942 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0) | |
4 | readdcl 10954 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 + 𝑧) ∈ ℝ) | |
5 | eleq1 2826 | . . . . . . . 8 ⊢ ((𝑥 + 𝑧) = 0 → ((𝑥 + 𝑧) ∈ ℝ ↔ 0 ∈ ℝ)) | |
6 | 4, 5 | syl5ibcom 244 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 + 𝑧) = 0 → 0 ∈ ℝ)) |
7 | 6 | rexlimdva 3213 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0 → 0 ∈ ℝ)) |
8 | 3, 7 | mpd 15 | . . . . 5 ⊢ (𝑥 ∈ ℝ → 0 ∈ ℝ) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦))) → 0 ∈ ℝ) |
10 | 9 | rexlimiva 3210 | . . 3 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦)) → 0 ∈ ℝ) |
11 | 1, 2, 10 | mp2b 10 | . 2 ⊢ 0 ∈ ℝ |
12 | 11 | recni 10989 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 ici 10873 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 ax-icn 10930 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |