MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cnALT Structured version   Visualization version   GIF version

Theorem 0cnALT 11343
Description: Alternate proof of 0cn 11099 which does not reference ax-1cn 11059. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0cnALT 0 ∈ ℂ

Proof of Theorem 0cnALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-icn 11060 . . 3 i ∈ ℂ
2 cnre 11104 . . 3 (i ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦)))
3 ax-rnegex 11072 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0)
4 readdcl 11084 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 + 𝑧) ∈ ℝ)
5 eleq1 2819 . . . . . . . 8 ((𝑥 + 𝑧) = 0 → ((𝑥 + 𝑧) ∈ ℝ ↔ 0 ∈ ℝ))
64, 5syl5ibcom 245 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 + 𝑧) = 0 → 0 ∈ ℝ))
76rexlimdva 3133 . . . . . 6 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0 → 0 ∈ ℝ))
83, 7mpd 15 . . . . 5 (𝑥 ∈ ℝ → 0 ∈ ℝ)
98adantr 480 . . . 4 ((𝑥 ∈ ℝ ∧ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦))) → 0 ∈ ℝ)
109rexlimiva 3125 . . 3 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ i = (𝑥 + (i · 𝑦)) → 0 ∈ ℝ)
111, 2, 10mp2b 10 . 2 0 ∈ ℝ
1211recni 11121 1 0 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wrex 3056  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  ici 11003   + caddc 11004   · cmul 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-resscn 11058  ax-icn 11060  ax-addrcl 11062  ax-rnegex 11072  ax-cnre 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806  df-rex 3057  df-ss 3914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator