![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cnALT2 | Structured version Visualization version GIF version |
Description: Alternate proof of 0cnALT 11445 which is shorter, but depends on ax-8 2100, ax-13 2363, ax-sep 5289, ax-nul 5296, ax-pow 5353, ax-pr 5417, ax-un 7718, and every complex number axiom except ax-pre-mulgt0 11183 and ax-pre-sup 11184. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0cnALT2 | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11165 | . . 3 ⊢ i ∈ ℂ | |
2 | cnegex 11392 | . . 3 ⊢ (i ∈ ℂ → ∃𝑥 ∈ ℂ (i + 𝑥) = 0) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ ℂ (i + 𝑥) = 0 |
4 | addcl 11188 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i + 𝑥) ∈ ℂ) | |
5 | 1, 4 | mpan 687 | . . . 4 ⊢ (𝑥 ∈ ℂ → (i + 𝑥) ∈ ℂ) |
6 | eleq1 2813 | . . . 4 ⊢ ((i + 𝑥) = 0 → ((i + 𝑥) ∈ ℂ ↔ 0 ∈ ℂ)) | |
7 | 5, 6 | syl5ibcom 244 | . . 3 ⊢ (𝑥 ∈ ℂ → ((i + 𝑥) = 0 → 0 ∈ ℂ)) |
8 | 7 | rexlimiv 3140 | . 2 ⊢ (∃𝑥 ∈ ℂ (i + 𝑥) = 0 → 0 ∈ ℂ) |
9 | 3, 8 | ax-mp 5 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∃wrex 3062 (class class class)co 7401 ℂcc 11104 0cc0 11106 ici 11108 + caddc 11109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-ltxr 11250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |