| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version | ||
| Description: Alias for ax-cnre 11117, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-cnre 11117 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7369 ℂcc 11042 ℝcr 11043 ici 11046 + caddc 11047 · cmul 11049 |
| This theorem was proved from axioms: ax-cnre 11117 |
| This theorem is referenced by: mulrid 11148 1re 11150 0re 11152 mul02 11328 cnegex 11331 0cnALT 11385 recex 11786 creur 12156 creui 12157 cju 12158 cnref1o 12920 replim 15058 ipasslem11 30819 sn-addlid 42385 sn-it0e0 42397 sn-negex12 42398 sn-mullid 42417 sn-0tie0 42432 sn-mul02 42433 |
| Copyright terms: Public domain | W3C validator |