MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 10436
Description: Alias for ax-cnre 10408, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 10408 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  wrex 3090  (class class class)co 6976  cc 10333  cr 10334  ici 10337   + caddc 10338   · cmul 10340
This theorem was proved from axioms:  ax-cnre 10408
This theorem is referenced by:  mulid1  10437  1re  10439  0re  10441  mul02  10618  cnegex  10621  0cnALT  10674  recex  11073  creur  11433  creui  11434  cju  11435  cnref1o  12199  replim  14336  ipasslem11  28394
  Copyright terms: Public domain W3C validator