MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 11287
Description: Alias for ax-cnre 11257, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 11257 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  (class class class)co 7448  cc 11182  cr 11183  ici 11186   + caddc 11187   · cmul 11189
This theorem was proved from axioms:  ax-cnre 11257
This theorem is referenced by:  mulrid  11288  1re  11290  0re  11292  mul02  11468  cnegex  11471  0cnALT  11524  recex  11922  creur  12287  creui  12288  cju  12289  cnref1o  13050  replim  15165  ipasslem11  30872  sn-addlid  42380  sn-it0e0  42391  sn-negex12  42392  sn-mullid  42411  sn-0tie0  42415  sn-mul02  42416
  Copyright terms: Public domain W3C validator