MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 10972
Description: Alias for ax-cnre 10944, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 10944 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  (class class class)co 7275  cc 10869  cr 10870  ici 10873   + caddc 10874   · cmul 10876
This theorem was proved from axioms:  ax-cnre 10944
This theorem is referenced by:  mulid1  10973  1re  10975  0re  10977  mul02  11153  cnegex  11156  0cnALT  11209  recex  11607  creur  11967  creui  11968  cju  11969  cnref1o  12725  replim  14827  ipasslem11  29202  sn-addid2  40387  sn-it0e0  40397  sn-negex12  40398  sn-mulid2  40417  sn-0tie0  40421  sn-mul02  40422
  Copyright terms: Public domain W3C validator