| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version | ||
| Description: Alias for ax-cnre 11207, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-cnre 11207 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 (class class class)co 7410 ℂcc 11132 ℝcr 11133 ici 11136 + caddc 11137 · cmul 11139 |
| This theorem was proved from axioms: ax-cnre 11207 |
| This theorem is referenced by: mulrid 11238 1re 11240 0re 11242 mul02 11418 cnegex 11421 0cnALT 11475 recex 11874 creur 12239 creui 12240 cju 12241 cnref1o 13006 replim 15140 ipasslem11 30826 sn-addlid 42414 sn-it0e0 42425 sn-negex12 42426 sn-mullid 42445 sn-0tie0 42449 sn-mul02 42450 |
| Copyright terms: Public domain | W3C validator |