MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 11178
Description: Alias for ax-cnre 11148, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 11148 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3054  (class class class)co 7390  cc 11073  cr 11074  ici 11077   + caddc 11078   · cmul 11080
This theorem was proved from axioms:  ax-cnre 11148
This theorem is referenced by:  mulrid  11179  1re  11181  0re  11183  mul02  11359  cnegex  11362  0cnALT  11416  recex  11817  creur  12187  creui  12188  cju  12189  cnref1o  12951  replim  15089  ipasslem11  30776  sn-addlid  42399  sn-it0e0  42411  sn-negex12  42412  sn-mullid  42431  sn-0tie0  42446  sn-mul02  42447
  Copyright terms: Public domain W3C validator