Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version |
Description: Alias for ax-cnre 10944, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-cnre 10944 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 (class class class)co 7275 ℂcc 10869 ℝcr 10870 ici 10873 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-cnre 10944 |
This theorem is referenced by: mulid1 10973 1re 10975 0re 10977 mul02 11153 cnegex 11156 0cnALT 11209 recex 11607 creur 11967 creui 11968 cju 11969 cnref1o 12725 replim 14827 ipasslem11 29202 sn-addid2 40387 sn-it0e0 40397 sn-negex12 40398 sn-mulid2 40417 sn-0tie0 40421 sn-mul02 40422 |
Copyright terms: Public domain | W3C validator |