MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 11258
Description: Alias for ax-cnre 11228, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 11228 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wrex 3070  (class class class)co 7431  cc 11153  cr 11154  ici 11157   + caddc 11158   · cmul 11160
This theorem was proved from axioms:  ax-cnre 11228
This theorem is referenced by:  mulrid  11259  1re  11261  0re  11263  mul02  11439  cnegex  11442  0cnALT  11496  recex  11895  creur  12260  creui  12261  cju  12262  cnref1o  13027  replim  15155  ipasslem11  30859  sn-addlid  42434  sn-it0e0  42445  sn-negex12  42446  sn-mullid  42465  sn-0tie0  42469  sn-mul02  42470
  Copyright terms: Public domain W3C validator