| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version | ||
| Description: Alias for ax-cnre 11071, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-cnre 11071 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 (class class class)co 7341 ℂcc 10996 ℝcr 10997 ici 11000 + caddc 11001 · cmul 11003 |
| This theorem was proved from axioms: ax-cnre 11071 |
| This theorem is referenced by: mulrid 11102 1re 11104 0re 11106 mul02 11283 cnegex 11286 0cnALT 11340 recex 11741 creur 12111 creui 12112 cju 12113 cnref1o 12875 replim 15015 ipasslem11 30810 sn-addlid 42416 sn-it0e0 42428 sn-negex12 42429 sn-mullid 42448 sn-0tie0 42463 sn-mul02 42464 |
| Copyright terms: Public domain | W3C validator |