MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 10903
Description: Alias for ax-cnre 10875, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 10875 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wrex 3064  (class class class)co 7255  cc 10800  cr 10801  ici 10804   + caddc 10805   · cmul 10807
This theorem was proved from axioms:  ax-cnre 10875
This theorem is referenced by:  mulid1  10904  1re  10906  0re  10908  mul02  11083  cnegex  11086  0cnALT  11139  recex  11537  creur  11897  creui  11898  cju  11899  cnref1o  12654  replim  14755  ipasslem11  29103  sn-addid2  40308  sn-it0e0  40318  sn-negex12  40319  sn-mulid2  40338  sn-0tie0  40342  sn-mul02  40343
  Copyright terms: Public domain W3C validator