![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version |
Description: Alias for ax-cnre 11257, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-cnre 11257 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 ℂcc 11182 ℝcr 11183 ici 11186 + caddc 11187 · cmul 11189 |
This theorem was proved from axioms: ax-cnre 11257 |
This theorem is referenced by: mulrid 11288 1re 11290 0re 11292 mul02 11468 cnegex 11471 0cnALT 11524 recex 11922 creur 12287 creui 12288 cju 12289 cnref1o 13050 replim 15165 ipasslem11 30872 sn-addlid 42380 sn-it0e0 42391 sn-negex12 42392 sn-mullid 42411 sn-0tie0 42415 sn-mul02 42416 |
Copyright terms: Public domain | W3C validator |