MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 11237
Description: Alias for ax-cnre 11207, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 11207 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3061  (class class class)co 7410  cc 11132  cr 11133  ici 11136   + caddc 11137   · cmul 11139
This theorem was proved from axioms:  ax-cnre 11207
This theorem is referenced by:  mulrid  11238  1re  11240  0re  11242  mul02  11418  cnegex  11421  0cnALT  11475  recex  11874  creur  12239  creui  12240  cju  12241  cnref1o  13006  replim  15140  ipasslem11  30826  sn-addlid  42414  sn-it0e0  42425  sn-negex12  42426  sn-mullid  42445  sn-0tie0  42449  sn-mul02  42450
  Copyright terms: Public domain W3C validator