MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 11042
Description: Alias for ax-cnre 11014, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 11014 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wrex 3071  (class class class)co 7313  cc 10939  cr 10940  ici 10943   + caddc 10944   · cmul 10946
This theorem was proved from axioms:  ax-cnre 11014
This theorem is referenced by:  mulid1  11043  1re  11045  0re  11047  mul02  11223  cnegex  11226  0cnALT  11279  recex  11677  creur  12037  creui  12038  cju  12039  cnref1o  12795  replim  14896  ipasslem11  29310  sn-addid2  40597  sn-it0e0  40607  sn-negex12  40608  sn-mulid2  40627  sn-0tie0  40631  sn-mul02  40632
  Copyright terms: Public domain W3C validator