![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version |
Description: Alias for ax-cnre 10408, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-cnre 10408 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ∃wrex 3090 (class class class)co 6976 ℂcc 10333 ℝcr 10334 ici 10337 + caddc 10338 · cmul 10340 |
This theorem was proved from axioms: ax-cnre 10408 |
This theorem is referenced by: mulid1 10437 1re 10439 0re 10441 mul02 10618 cnegex 10621 0cnALT 10674 recex 11073 creur 11433 creui 11434 cju 11435 cnref1o 12199 replim 14336 ipasslem11 28394 |
Copyright terms: Public domain | W3C validator |