Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version |
Description: Alias for ax-cnre 10875, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-cnre 10875 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 (class class class)co 7255 ℂcc 10800 ℝcr 10801 ici 10804 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-cnre 10875 |
This theorem is referenced by: mulid1 10904 1re 10906 0re 10908 mul02 11083 cnegex 11086 0cnALT 11139 recex 11537 creur 11897 creui 11898 cju 11899 cnref1o 12654 replim 14755 ipasslem11 29103 sn-addid2 40308 sn-it0e0 40318 sn-negex12 40319 sn-mulid2 40338 sn-0tie0 40342 sn-mul02 40343 |
Copyright terms: Public domain | W3C validator |