| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version | ||
| Description: Alias for ax-cnre 11119, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-cnre 11119 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7369 ℂcc 11044 ℝcr 11045 ici 11048 + caddc 11049 · cmul 11051 |
| This theorem was proved from axioms: ax-cnre 11119 |
| This theorem is referenced by: mulrid 11150 1re 11152 0re 11154 mul02 11330 cnegex 11333 0cnALT 11387 recex 11788 creur 12158 creui 12159 cju 12160 cnref1o 12922 replim 15059 ipasslem11 30820 sn-addlid 42386 sn-it0e0 42398 sn-negex12 42399 sn-mullid 42418 sn-0tie0 42433 sn-mul02 42434 |
| Copyright terms: Public domain | W3C validator |