Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version |
Description: Alias for ax-cnre 11014, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-cnre 11014 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 (class class class)co 7313 ℂcc 10939 ℝcr 10940 ici 10943 + caddc 10944 · cmul 10946 |
This theorem was proved from axioms: ax-cnre 11014 |
This theorem is referenced by: mulid1 11043 1re 11045 0re 11047 mul02 11223 cnegex 11226 0cnALT 11279 recex 11677 creur 12037 creui 12038 cju 12039 cnref1o 12795 replim 14896 ipasslem11 29310 sn-addid2 40597 sn-it0e0 40607 sn-negex12 40608 sn-mulid2 40627 sn-0tie0 40631 sn-mul02 40632 |
Copyright terms: Public domain | W3C validator |