MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 11147
Description: Alias for ax-cnre 11117, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 11117 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7369  cc 11042  cr 11043  ici 11046   + caddc 11047   · cmul 11049
This theorem was proved from axioms:  ax-cnre 11117
This theorem is referenced by:  mulrid  11148  1re  11150  0re  11152  mul02  11328  cnegex  11331  0cnALT  11385  recex  11786  creur  12156  creui  12157  cju  12158  cnref1o  12920  replim  15058  ipasslem11  30819  sn-addlid  42385  sn-it0e0  42397  sn-negex12  42398  sn-mullid  42417  sn-0tie0  42432  sn-mul02  42433
  Copyright terms: Public domain W3C validator