MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 11119
Description: Alias for ax-cnre 11089, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 11089 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wrex 3058  (class class class)co 7355  cc 11014  cr 11015  ici 11018   + caddc 11019   · cmul 11021
This theorem was proved from axioms:  ax-cnre 11089
This theorem is referenced by:  mulrid  11120  1re  11122  0re  11124  mul02  11301  cnegex  11304  0cnALT  11358  recex  11759  creur  12129  creui  12130  cju  12131  cnref1o  12893  replim  15033  ipasslem11  30831  sn-addlid  42512  sn-it0e0  42524  sn-negex12  42525  sn-mullid  42544  sn-0tie0  42559  sn-mul02  42560
  Copyright terms: Public domain W3C validator