| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version | ||
| Description: Alias for ax-cnre 11089, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-cnre 11089 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 (class class class)co 7355 ℂcc 11014 ℝcr 11015 ici 11018 + caddc 11019 · cmul 11021 |
| This theorem was proved from axioms: ax-cnre 11089 |
| This theorem is referenced by: mulrid 11120 1re 11122 0re 11124 mul02 11301 cnegex 11304 0cnALT 11358 recex 11759 creur 12129 creui 12130 cju 12131 cnref1o 12893 replim 15033 ipasslem11 30831 sn-addlid 42512 sn-it0e0 42524 sn-negex12 42525 sn-mullid 42544 sn-0tie0 42559 sn-mul02 42560 |
| Copyright terms: Public domain | W3C validator |