MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 11149
Description: Alias for ax-cnre 11119, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 11119 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7369  cc 11044  cr 11045  ici 11048   + caddc 11049   · cmul 11051
This theorem was proved from axioms:  ax-cnre 11119
This theorem is referenced by:  mulrid  11150  1re  11152  0re  11154  mul02  11330  cnegex  11333  0cnALT  11387  recex  11788  creur  12158  creui  12159  cju  12160  cnref1o  12922  replim  15059  ipasslem11  30820  sn-addlid  42386  sn-it0e0  42398  sn-negex12  42399  sn-mullid  42418  sn-0tie0  42433  sn-mul02  42434
  Copyright terms: Public domain W3C validator