| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version | ||
| Description: Alias for ax-cnre 11148, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-cnre 11148 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 (class class class)co 7390 ℂcc 11073 ℝcr 11074 ici 11077 + caddc 11078 · cmul 11080 |
| This theorem was proved from axioms: ax-cnre 11148 |
| This theorem is referenced by: mulrid 11179 1re 11181 0re 11183 mul02 11359 cnegex 11362 0cnALT 11416 recex 11817 creur 12187 creui 12188 cju 12189 cnref1o 12951 replim 15089 ipasslem11 30776 sn-addlid 42399 sn-it0e0 42411 sn-negex12 42412 sn-mullid 42431 sn-0tie0 42446 sn-mul02 42447 |
| Copyright terms: Public domain | W3C validator |