| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elaxnul | Structured version Visualization version GIF version | ||
| Description: A class that contains the empty set models the Null Set Axiom ax-nul 5274. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| 0elaxnul | ⊢ (∅ ∈ 𝑀 → ∃𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4311 | . . 3 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | rgenw 3054 | . 2 ⊢ ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ ∅ |
| 3 | eleq2 2822 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ∅)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑦 ∈ 𝑥 ↔ ¬ 𝑦 ∈ ∅)) |
| 5 | 4 | ralbidv 3161 | . . 3 ⊢ (𝑥 = ∅ → (∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ ∅)) |
| 6 | 5 | rspcev 3599 | . 2 ⊢ ((∅ ∈ 𝑀 ∧ ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ ∅) → ∃𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥) |
| 7 | 2, 6 | mpan2 691 | 1 ⊢ (∅ ∈ 𝑀 → ∃𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∅c0 4306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-dif 3927 df-nul 4307 |
| This theorem is referenced by: wfaxnul 44955 |
| Copyright terms: Public domain | W3C validator |