Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elaxnul Structured version   Visualization version   GIF version

Theorem 0elaxnul 44973
Description: A class that contains the empty set models the Null Set Axiom ax-nul 5304. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
0elaxnul (∅ ∈ 𝑀 → ∃𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑀
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem 0elaxnul
StepHypRef Expression
1 noel 4337 . . 3 ¬ 𝑦 ∈ ∅
21rgenw 3064 . 2 𝑦𝑀 ¬ 𝑦 ∈ ∅
3 eleq2 2829 . . . . 5 (𝑥 = ∅ → (𝑦𝑥𝑦 ∈ ∅))
43notbid 318 . . . 4 (𝑥 = ∅ → (¬ 𝑦𝑥 ↔ ¬ 𝑦 ∈ ∅))
54ralbidv 3177 . . 3 (𝑥 = ∅ → (∀𝑦𝑀 ¬ 𝑦𝑥 ↔ ∀𝑦𝑀 ¬ 𝑦 ∈ ∅))
65rspcev 3621 . 2 ((∅ ∈ 𝑀 ∧ ∀𝑦𝑀 ¬ 𝑦 ∈ ∅) → ∃𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥)
72, 6mpan2 691 1 (∅ ∈ 𝑀 → ∃𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wral 3060  wrex 3069  c0 4332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-dif 3953  df-nul 4333
This theorem is referenced by:  wfaxnul  44986
  Copyright terms: Public domain W3C validator