Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elaxnul Structured version   Visualization version   GIF version

Theorem 0elaxnul 44966
Description: A class that contains the empty set models the Null Set Axiom ax-nul 5263. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
0elaxnul (∅ ∈ 𝑀 → ∃𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑀
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem 0elaxnul
StepHypRef Expression
1 noel 4303 . . 3 ¬ 𝑦 ∈ ∅
21rgenw 3049 . 2 𝑦𝑀 ¬ 𝑦 ∈ ∅
3 eleq2 2818 . . . . 5 (𝑥 = ∅ → (𝑦𝑥𝑦 ∈ ∅))
43notbid 318 . . . 4 (𝑥 = ∅ → (¬ 𝑦𝑥 ↔ ¬ 𝑦 ∈ ∅))
54ralbidv 3157 . . 3 (𝑥 = ∅ → (∀𝑦𝑀 ¬ 𝑦𝑥 ↔ ∀𝑦𝑀 ¬ 𝑦 ∈ ∅))
65rspcev 3591 . 2 ((∅ ∈ 𝑀 ∧ ∀𝑦𝑀 ¬ 𝑦 ∈ ∅) → ∃𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥)
72, 6mpan2 691 1 (∅ ∈ 𝑀 → ∃𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wral 3045  wrex 3054  c0 4298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-dif 3919  df-nul 4299
This theorem is referenced by:  wfaxnul  44979
  Copyright terms: Public domain W3C validator