MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.12sn Structured version   Visualization version   GIF version

Theorem r19.12sn 4724
Description: Special case of r19.12 3311 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 18-Mar-2020.)
Assertion
Ref Expression
r19.12sn (𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem r19.12sn
StepHypRef Expression
1 sbcralg 3868 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
2 rexsns 4673 . 2 (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
3 rexsns 4673 . . 3 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
43ralbii 3093 . 2 (∀𝑦𝐵𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑)
51, 2, 43bitr4g 313 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wral 3061  wrex 3070  [wsbc 3777  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-v 3476  df-sbc 3778  df-sn 4629
This theorem is referenced by:  intimasn  42490
  Copyright terms: Public domain W3C validator