![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.12sn | Structured version Visualization version GIF version |
Description: Special case of r19.12 3320 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 18-Mar-2020.) |
Ref | Expression |
---|---|
r19.12sn | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcralg 3896 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | |
2 | rexsns 4693 | . 2 ⊢ (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑) | |
3 | rexsns 4693 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) | |
4 | 3 | ralbii 3099 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 [wsbc 3804 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-sbc 3805 df-sn 4649 |
This theorem is referenced by: intimasn 43619 |
Copyright terms: Public domain | W3C validator |