MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu2 Structured version   Visualization version   GIF version

Theorem 2eu2 2654
Description: Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.)
Assertion
Ref Expression
2eu2 (∃!𝑦𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ ∃!𝑥𝑦𝜑))

Proof of Theorem 2eu2
StepHypRef Expression
1 eumo 2578 . . 3 (∃!𝑦𝑥𝜑 → ∃*𝑦𝑥𝜑)
2 2moex 2642 . . 3 (∃*𝑦𝑥𝜑 → ∀𝑥∃*𝑦𝜑)
3 2eu1 2652 . . . 4 (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑)))
4 simpl 483 . . . 4 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥𝑦𝜑)
53, 4syl6bi 252 . . 3 (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥𝑦𝜑))
61, 2, 53syl 18 . 2 (∃!𝑦𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥𝑦𝜑))
7 2exeu 2648 . . 3 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
87expcom 414 . 2 (∃!𝑦𝑥𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑥∃!𝑦𝜑))
96, 8impbid 211 1 (∃!𝑦𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ ∃!𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569
This theorem is referenced by:  2eu8  2660
  Copyright terms: Public domain W3C validator