| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eu2 | Structured version Visualization version GIF version | ||
| Description: Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2eu2 | ⊢ (∃!𝑦∃𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ ∃!𝑥∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo 2572 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 → ∃*𝑦∃𝑥𝜑) | |
| 2 | 2moex 2634 | . . 3 ⊢ (∃*𝑦∃𝑥𝜑 → ∀𝑥∃*𝑦𝜑) | |
| 3 | 2eu1 2645 | . . . 4 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑))) | |
| 4 | simpl 482 | . . . 4 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃𝑦𝜑) | |
| 5 | 3, 4 | biimtrdi 253 | . . 3 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑)) |
| 6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ (∃!𝑦∃𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑)) |
| 7 | 2exeu 2640 | . . 3 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) | |
| 8 | 7 | expcom 413 | . 2 ⊢ (∃!𝑦∃𝑥𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑥∃!𝑦𝜑)) |
| 9 | 6, 8 | impbid 212 | 1 ⊢ (∃!𝑦∃𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ ∃!𝑥∃𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃*wmo 2532 ∃!weu 2562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2534 df-eu 2563 |
| This theorem is referenced by: 2eu8 2653 |
| Copyright terms: Public domain | W3C validator |