![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2reurmo | Structured version Visualization version GIF version |
Description: Double restricted quantification with restricted existential uniqueness and restricted "at most one", analogous to 2eumo 2640. (Contributed by Alexander van der Vekens, 24-Jun-2017.) |
Ref | Expression |
---|---|
2reurmo | ⊢ (∃!𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuimrmo 3754 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∃!𝑦 ∈ 𝐵 𝜑 → ∃*𝑦 ∈ 𝐵 𝜑) → (∃!𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) | |
2 | reurmo 3381 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 𝜑 → ∃*𝑦 ∈ 𝐵 𝜑) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃!𝑦 ∈ 𝐵 𝜑 → ∃*𝑦 ∈ 𝐵 𝜑)) |
4 | 1, 3 | mprg 3065 | 1 ⊢ (∃!𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃!wreu 3376 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-eu 2567 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |