Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reurmo Structured version   Visualization version   GIF version

Theorem 2reurmo 41948
Description: Double restricted quantification with restricted existential uniqueness and restricted "at most one.", analogous to 2eumo 2700. (Contributed by Alexander van der Vekens, 24-Jun-2017.)
Assertion
Ref Expression
2reurmo (∃!𝑥𝐴 ∃*𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2reurmo
StepHypRef Expression
1 reuimrmo 41944 . 2 (∀𝑥𝐴 (∃!𝑦𝐵 𝜑 → ∃*𝑦𝐵 𝜑) → (∃!𝑥𝐴 ∃*𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑))
2 reurmo 3343 . . 3 (∃!𝑦𝐵 𝜑 → ∃*𝑦𝐵 𝜑)
32a1i 11 . 2 (𝑥𝐴 → (∃!𝑦𝐵 𝜑 → ∃*𝑦𝐵 𝜑))
41, 3mprg 3106 1 (∃!𝑥𝐴 ∃*𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  ∃!wreu 3090  ∃*wrmo 3091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006
This theorem depends on definitions:  df-bi 199  df-an 386  df-ex 1876  df-mo 2591  df-eu 2609  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator