| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2reurmo | Structured version Visualization version GIF version | ||
| Description: Double restricted quantification with restricted existential uniqueness and restricted "at most one", analogous to 2eumo 2641. (Contributed by Alexander van der Vekens, 24-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reurmo | ⊢ (∃!𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuimrmo 3750 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∃!𝑦 ∈ 𝐵 𝜑 → ∃*𝑦 ∈ 𝐵 𝜑) → (∃!𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) | |
| 2 | reurmo 3382 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 𝜑 → ∃*𝑦 ∈ 𝐵 𝜑) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃!𝑦 ∈ 𝐵 𝜑 → ∃*𝑦 ∈ 𝐵 𝜑)) |
| 4 | 1, 3 | mprg 3066 | 1 ⊢ (∃!𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∃!wreu 3377 ∃*wrmo 3378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2539 df-eu 2568 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |