MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reurmo Structured version   Visualization version   GIF version

Theorem 2reurmo 3730
Description: Double restricted quantification with restricted existential uniqueness and restricted "at most one", analogous to 2eumo 2635. (Contributed by Alexander van der Vekens, 24-Jun-2017.)
Assertion
Ref Expression
2reurmo (∃!𝑥𝐴 ∃*𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)

Proof of Theorem 2reurmo
StepHypRef Expression
1 reuimrmo 3716 . 2 (∀𝑥𝐴 (∃!𝑦𝐵 𝜑 → ∃*𝑦𝐵 𝜑) → (∃!𝑥𝐴 ∃*𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑))
2 reurmo 3357 . . 3 (∃!𝑦𝐵 𝜑 → ∃*𝑦𝐵 𝜑)
32a1i 11 . 2 (𝑥𝐴 → (∃!𝑦𝐵 𝜑 → ∃*𝑦𝐵 𝜑))
41, 3mprg 3050 1 (∃!𝑥𝐴 ∃*𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ∃!wreu 3352  ∃*wrmo 3353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2533  df-eu 2562  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator