Proof of Theorem 2reu5
| Step | Hyp | Ref
| Expression |
| 1 | | r19.29r 3116 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) → ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 2 | | r19.29r 3116 |
. . . . . . . . 9
⊢
((∃𝑦 ∈
𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) → ∃𝑦 ∈ 𝐵 (𝜑 ∧ (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 3 | 2 | reximi 3084 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 4 | | pm3.35 803 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
| 5 | 4 | reximi 3084 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
𝐵 (𝜑 ∧ (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) → ∃𝑦 ∈ 𝐵 (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
| 6 | 5 | reximi 3084 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
| 7 | | eleq1w 2824 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 8 | | eleq1w 2824 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) |
| 9 | 7, 8 | bi2anan9 638 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) |
| 10 | 9 | biimpac 478 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) |
| 11 | 10 | ancomd 461 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴)) |
| 12 | 11 | ex 412 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴))) |
| 13 | 12 | rexlimivv 3201 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴)) |
| 14 | 1, 3, 6, 13 | 4syl 19 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) → (𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴)) |
| 15 | 14 | ex 412 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴))) |
| 16 | 15 | pm4.71rd 562 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
| 17 | | anass 468 |
. . . . 5
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ (𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
| 18 | 16, 17 | bitrdi 287 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))))) |
| 19 | 18 | 2exbidv 1924 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 → (∃𝑧∃𝑤∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∃𝑧∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))))) |
| 20 | 19 | pm5.32i 574 |
. 2
⊢
((∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧∃𝑤∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))))) |
| 21 | | 2reu5lem3 3763 |
. 2
⊢
((∃!𝑥 ∈
𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧∃𝑤∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 22 | | df-rex 3071 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 23 | | r19.42v 3191 |
. . . . . 6
⊢
(∃𝑤 ∈
𝐵 (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ (𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 24 | | df-rex 3071 |
. . . . . 6
⊢
(∃𝑤 ∈
𝐵 (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ ∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
| 25 | 23, 24 | bitr3i 277 |
. . . . 5
⊢ ((𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ ∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
| 26 | 25 | exbii 1848 |
. . . 4
⊢
(∃𝑧(𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ ∃𝑧∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
| 27 | 22, 26 | bitri 275 |
. . 3
⊢
(∃𝑧 ∈
𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∃𝑧∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
| 28 | 27 | anbi2i 623 |
. 2
⊢
((∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))))) |
| 29 | 20, 21, 28 | 3bitr4i 303 |
1
⊢
((∃!𝑥 ∈
𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |