MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reurex Structured version   Visualization version   GIF version

Theorem 2reurex 3782
Description: Double restricted quantification with existential uniqueness, analogous to 2euex 2644. (Contributed by Alexander van der Vekens, 24-Jun-2017.)
Assertion
Ref Expression
2reurex (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦𝐵 ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2reurex
StepHypRef Expression
1 reu5 3390 . 2 (∃!𝑥𝐴𝑦𝐵 𝜑 ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃*𝑥𝐴𝑦𝐵 𝜑))
2 rexcom 3296 . . . 4 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
3 nfcv 2908 . . . . . 6 𝑦𝐴
4 nfre1 3291 . . . . . 6 𝑦𝑦𝐵 𝜑
53, 4nfrmow 3421 . . . . 5 𝑦∃*𝑥𝐴𝑦𝐵 𝜑
6 rspe 3255 . . . . . . . . . . 11 ((𝑦𝐵𝜑) → ∃𝑦𝐵 𝜑)
76ex 412 . . . . . . . . . 10 (𝑦𝐵 → (𝜑 → ∃𝑦𝐵 𝜑))
87ralrimivw 3156 . . . . . . . . 9 (𝑦𝐵 → ∀𝑥𝐴 (𝜑 → ∃𝑦𝐵 𝜑))
9 rmoim 3762 . . . . . . . . 9 (∀𝑥𝐴 (𝜑 → ∃𝑦𝐵 𝜑) → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
108, 9syl 17 . . . . . . . 8 (𝑦𝐵 → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
1110impcom 407 . . . . . . 7 ((∃*𝑥𝐴𝑦𝐵 𝜑𝑦𝐵) → ∃*𝑥𝐴 𝜑)
12 rmo5 3408 . . . . . . 7 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
1311, 12sylib 218 . . . . . 6 ((∃*𝑥𝐴𝑦𝐵 𝜑𝑦𝐵) → (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
1413ex 412 . . . . 5 (∃*𝑥𝐴𝑦𝐵 𝜑 → (𝑦𝐵 → (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑)))
155, 14reximdai 3267 . . . 4 (∃*𝑥𝐴𝑦𝐵 𝜑 → (∃𝑦𝐵𝑥𝐴 𝜑 → ∃𝑦𝐵 ∃!𝑥𝐴 𝜑))
162, 15biimtrid 242 . . 3 (∃*𝑥𝐴𝑦𝐵 𝜑 → (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦𝐵 ∃!𝑥𝐴 𝜑))
1716impcom 407 . 2 ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃*𝑥𝐴𝑦𝐵 𝜑) → ∃𝑦𝐵 ∃!𝑥𝐴 𝜑)
181, 17sylbi 217 1 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦𝐵 ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389
This theorem is referenced by:  2rexreu  3784
  Copyright terms: Public domain W3C validator