MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurmo Structured version   Visualization version   GIF version

Theorem reurmo 3388
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 3385 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 498 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3070  ∃!wreu 3328  ∃*wrmo 3329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-eu 2567  df-rex 3071  df-rmo 3331  df-reu 3332
This theorem is referenced by:  reuimrmo  3685  reuxfr1d  3690  2reurmo  3699  2rexreu  3702  2reu2  3836  enqeq  10740  eqsqrtd  15128  efgred2  19408  0frgp  19434  frgpnabllem2  19524  frgpcyg  20830  lmieu  27194  poimirlem25  35850  poimirlem26  35851  addinvcom  40608
  Copyright terms: Public domain W3C validator