| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3353 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3053 ∃!wreu 3349 ∃*wrmo 3350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3351 df-reu 3352 |
| This theorem is referenced by: reuimrmo 3713 reuxfr1d 3718 2reurmo 3727 2rexreu 3730 2reu2 3858 enqeq 10863 eqsqrtd 15310 efgred2 19659 0frgp 19685 frgpnabllem2 19780 frgpcyg 21459 lmieu 28687 poimirlem25 37612 poimirlem26 37613 addinvcom 42393 tfsconcatlem 43298 reuxfr1dd 48768 upeu 49133 |
| Copyright terms: Public domain | W3C validator |