| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3358 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3054 ∃!wreu 3354 ∃*wrmo 3355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2563 df-rex 3055 df-rmo 3356 df-reu 3357 |
| This theorem is referenced by: reuimrmo 3719 reuxfr1d 3724 2reurmo 3733 2rexreu 3736 2reu2 3864 enqeq 10894 eqsqrtd 15341 efgred2 19690 0frgp 19716 frgpnabllem2 19811 frgpcyg 21490 lmieu 28718 poimirlem25 37646 poimirlem26 37647 addinvcom 42427 tfsconcatlem 43332 reuxfr1dd 48799 upeu 49164 |
| Copyright terms: Public domain | W3C validator |