MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurmo Structured version   Visualization version   GIF version

Theorem reurmo 3359
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 3358 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 496 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3054  ∃!wreu 3354  ∃*wrmo 3355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-eu 2563  df-rex 3055  df-rmo 3356  df-reu 3357
This theorem is referenced by:  reuimrmo  3719  reuxfr1d  3724  2reurmo  3733  2rexreu  3736  2reu2  3864  enqeq  10894  eqsqrtd  15341  efgred2  19690  0frgp  19716  frgpnabllem2  19811  frgpcyg  21490  lmieu  28718  poimirlem25  37646  poimirlem26  37647  addinvcom  42427  tfsconcatlem  43332  reuxfr1dd  48799  upeu  49164
  Copyright terms: Public domain W3C validator