Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version |
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3337 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simprbi 500 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3062 ∃!wreu 3063 ∃*wrmo 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-eu 2568 df-rex 3067 df-reu 3068 df-rmo 3069 |
This theorem is referenced by: reuimrmo 3658 reuxfr1d 3663 2reurmo 3672 2rexreu 3675 2reu2 3810 enqeq 10548 eqsqrtd 14931 efgred2 19143 0frgp 19169 frgpnabllem2 19259 frgpcyg 20538 lmieu 26875 poimirlem25 35539 poimirlem26 35540 addinvcom 40121 |
Copyright terms: Public domain | W3C validator |