![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version |
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3340 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simprbi 491 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3088 ∃!wreu 3089 ∃*wrmo 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-eu 2607 df-rex 3093 df-reu 3094 df-rmo 3095 |
This theorem is referenced by: reuxfrd 5089 enqeq 10042 eqsqrtd 14445 efgred2 18478 0frgp 18504 frgpnabllem2 18589 frgpcyg 20240 lmieu 26025 reuxfr4d 29845 poimirlem25 33915 poimirlem26 33916 reuimrmo 41943 2reurmo 41947 2rexreu 41950 2reu2 41952 |
Copyright terms: Public domain | W3C validator |