Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version |
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3359 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3066 ∃!wreu 3067 ∃*wrmo 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-eu 2570 df-rex 3071 df-reu 3072 df-rmo 3073 |
This theorem is referenced by: reuimrmo 3683 reuxfr1d 3688 2reurmo 3697 2rexreu 3700 2reu2 3835 enqeq 10674 eqsqrtd 15060 efgred2 19340 0frgp 19366 frgpnabllem2 19456 frgpcyg 20762 lmieu 27126 poimirlem25 35781 poimirlem26 35782 addinvcom 40393 |
Copyright terms: Public domain | W3C validator |