Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version |
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3385 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simprbi 498 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3070 ∃!wreu 3328 ∃*wrmo 3329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-eu 2567 df-rex 3071 df-rmo 3331 df-reu 3332 |
This theorem is referenced by: reuimrmo 3685 reuxfr1d 3690 2reurmo 3699 2rexreu 3702 2reu2 3836 enqeq 10740 eqsqrtd 15128 efgred2 19408 0frgp 19434 frgpnabllem2 19524 frgpcyg 20830 lmieu 27194 poimirlem25 35850 poimirlem26 35851 addinvcom 40608 |
Copyright terms: Public domain | W3C validator |