| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3361 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3060 ∃!wreu 3357 ∃*wrmo 3358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2568 df-rex 3061 df-rmo 3359 df-reu 3360 |
| This theorem is referenced by: reuimrmo 3728 reuxfr1d 3733 2reurmo 3742 2rexreu 3745 2reu2 3873 enqeq 10948 eqsqrtd 15386 efgred2 19734 0frgp 19760 frgpnabllem2 19855 frgpcyg 21534 lmieu 28763 poimirlem25 37669 poimirlem26 37670 addinvcom 42474 tfsconcatlem 43360 reuxfr1dd 48785 upeu 49106 |
| Copyright terms: Public domain | W3C validator |