MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurmo Structured version   Visualization version   GIF version

Theorem reurmo 3346
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 3345 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 496 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3053  ∃!wreu 3341  ∃*wrmo 3342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-eu 2562  df-rex 3054  df-rmo 3343  df-reu 3344
This theorem is referenced by:  reuimrmo  3705  reuxfr1d  3710  2reurmo  3719  2rexreu  3722  2reu2  3850  enqeq  10828  eqsqrtd  15275  efgred2  19632  0frgp  19658  frgpnabllem2  19753  frgpcyg  21480  lmieu  28729  poimirlem25  37625  poimirlem26  37626  addinvcom  42405  tfsconcatlem  43309  reuxfr1dd  48791  upeu  49156
  Copyright terms: Public domain W3C validator