| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3348 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3056 ∃!wreu 3344 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2564 df-rex 3057 df-rmo 3346 df-reu 3347 |
| This theorem is referenced by: reuimrmo 3699 reuxfr1d 3704 2reurmo 3713 2rexreu 3716 2reu2 3844 enqeq 10820 eqsqrtd 15270 efgred2 19660 0frgp 19686 frgpnabllem2 19781 frgpcyg 21505 lmieu 28757 poimirlem25 37685 poimirlem26 37686 addinvcom 42465 tfsconcatlem 43369 reuxfr1dd 48838 upeu 49203 |
| Copyright terms: Public domain | W3C validator |