| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3345 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3053 ∃!wreu 3341 ∃*wrmo 3342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3343 df-reu 3344 |
| This theorem is referenced by: reuimrmo 3705 reuxfr1d 3710 2reurmo 3719 2rexreu 3722 2reu2 3850 enqeq 10828 eqsqrtd 15275 efgred2 19632 0frgp 19658 frgpnabllem2 19753 frgpcyg 21480 lmieu 28729 poimirlem25 37625 poimirlem26 37626 addinvcom 42405 tfsconcatlem 43309 reuxfr1dd 48791 upeu 49156 |
| Copyright terms: Public domain | W3C validator |