MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurmo Structured version   Visualization version   GIF version

Theorem reurmo 3354
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 3353 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 496 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3053  ∃!wreu 3349  ∃*wrmo 3350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-eu 2562  df-rex 3054  df-rmo 3351  df-reu 3352
This theorem is referenced by:  reuimrmo  3713  reuxfr1d  3718  2reurmo  3727  2rexreu  3730  2reu2  3858  enqeq  10863  eqsqrtd  15310  efgred2  19659  0frgp  19685  frgpnabllem2  19780  frgpcyg  21459  lmieu  28687  poimirlem25  37612  poimirlem26  37613  addinvcom  42393  tfsconcatlem  43298  reuxfr1dd  48768  upeu  49133
  Copyright terms: Public domain W3C validator