MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurmo Structured version   Visualization version   GIF version

Theorem reurmo 3362
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 3359 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 496 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3066  ∃!wreu 3067  ∃*wrmo 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-eu 2570  df-rex 3071  df-reu 3072  df-rmo 3073
This theorem is referenced by:  reuimrmo  3683  reuxfr1d  3688  2reurmo  3697  2rexreu  3700  2reu2  3835  enqeq  10674  eqsqrtd  15060  efgred2  19340  0frgp  19366  frgpnabllem2  19456  frgpcyg  20762  lmieu  27126  poimirlem25  35781  poimirlem26  35782  addinvcom  40393
  Copyright terms: Public domain W3C validator