| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3349 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3057 ∃!wreu 3345 ∃*wrmo 3346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2566 df-rex 3058 df-rmo 3347 df-reu 3348 |
| This theorem is referenced by: reuimrmo 3700 reuxfr1d 3705 2reurmo 3714 2rexreu 3717 2reu2 3845 enqeq 10836 eqsqrtd 15282 efgred2 19673 0frgp 19699 frgpnabllem2 19794 frgpcyg 21519 lmieu 28782 poimirlem25 37758 poimirlem26 37759 addinvcom 42602 tfsconcatlem 43493 reuxfr1dd 48968 upeu 49332 |
| Copyright terms: Public domain | W3C validator |