![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version |
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3380 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3068 ∃!wreu 3376 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2567 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: reuimrmo 3754 reuxfr1d 3759 2reurmo 3768 2rexreu 3771 2reu2 3907 enqeq 10972 eqsqrtd 15403 efgred2 19786 0frgp 19812 frgpnabllem2 19907 frgpcyg 21610 lmieu 28807 poimirlem25 37632 poimirlem26 37633 addinvcom 42438 tfsconcatlem 43326 reuxfr1dd 48655 upeu 48817 |
Copyright terms: Public domain | W3C validator |