MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurmo Structured version   Visualization version   GIF version

Theorem reurmo 3349
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 3348 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 496 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-eu 2564  df-rex 3057  df-rmo 3346  df-reu 3347
This theorem is referenced by:  reuimrmo  3699  reuxfr1d  3704  2reurmo  3713  2rexreu  3716  2reu2  3844  enqeq  10820  eqsqrtd  15270  efgred2  19660  0frgp  19686  frgpnabllem2  19781  frgpcyg  21505  lmieu  28757  poimirlem25  37685  poimirlem26  37686  addinvcom  42465  tfsconcatlem  43369  reuxfr1dd  48838  upeu  49203
  Copyright terms: Public domain W3C validator