MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurmo Structured version   Visualization version   GIF version

Theorem reurmo 3357
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 3356 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 496 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3053  ∃!wreu 3352  ∃*wrmo 3353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-eu 2562  df-rex 3054  df-rmo 3354  df-reu 3355
This theorem is referenced by:  reuimrmo  3716  reuxfr1d  3721  2reurmo  3730  2rexreu  3733  2reu2  3861  enqeq  10887  eqsqrtd  15334  efgred2  19683  0frgp  19709  frgpnabllem2  19804  frgpcyg  21483  lmieu  28711  poimirlem25  37639  poimirlem26  37640  addinvcom  42420  tfsconcatlem  43325  reuxfr1dd  48795  upeu  49160
  Copyright terms: Public domain W3C validator