| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3356 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3053 ∃!wreu 3352 ∃*wrmo 3353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3354 df-reu 3355 |
| This theorem is referenced by: reuimrmo 3716 reuxfr1d 3721 2reurmo 3730 2rexreu 3733 2reu2 3861 enqeq 10887 eqsqrtd 15334 efgred2 19683 0frgp 19709 frgpnabllem2 19804 frgpcyg 21483 lmieu 28711 poimirlem25 37639 poimirlem26 37640 addinvcom 42420 tfsconcatlem 43325 reuxfr1dd 48795 upeu 49160 |
| Copyright terms: Public domain | W3C validator |