MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurmo Structured version   Visualization version   GIF version

Theorem reurmo 3391
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 3390 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 496 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-eu 2572  df-rex 3077  df-rmo 3388  df-reu 3389
This theorem is referenced by:  reuimrmo  3767  reuxfr1d  3772  2reurmo  3781  2rexreu  3784  2reu2  3920  enqeq  11003  eqsqrtd  15416  efgred2  19795  0frgp  19821  frgpnabllem2  19916  frgpcyg  21615  lmieu  28810  poimirlem25  37605  poimirlem26  37606  addinvcom  42407  tfsconcatlem  43298
  Copyright terms: Public domain W3C validator