Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sbcrex Structured version   Visualization version   GIF version

Theorem 2sbcrex 39518
 Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.)
Assertion
Ref Expression
2sbcrex ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐶,𝑏   𝑎,𝑐   𝑏,𝑐   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑐)

Proof of Theorem 2sbcrex
StepHypRef Expression
1 sbcrex 3836 . . 3 ([𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐵 / 𝑏]𝜑)
21sbcbii 3808 . 2 ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑[𝐴 / 𝑎]𝑐𝐶 [𝐵 / 𝑏]𝜑)
3 sbcrex 3836 . 2 ([𝐴 / 𝑎]𝑐𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
42, 3bitri 277 1 ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208  ∃wrex 3126  [wsbc 3752 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-v 3475  df-sbc 3753 This theorem is referenced by:  2rexfrabdioph  39530  4rexfrabdioph  39532
 Copyright terms: Public domain W3C validator