Step | Hyp | Ref
| Expression |
1 | | 2sbcrex 40522 |
. . . . . . 7
⊢
([(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
𝜑 ↔ ∃𝑥 ∈ ℕ0
[(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑦 ∈ ℕ0 𝜑) |
2 | | 2sbcrex 40522 |
. . . . . . . 8
⊢
([(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑦 ∈ ℕ0 [(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑) |
3 | 2 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℕ0 [(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
[(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑) |
4 | 1, 3 | bitri 274 |
. . . . . 6
⊢
([(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
𝜑 ↔ ∃𝑥 ∈ ℕ0
∃𝑦 ∈
ℕ0 [(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑) |
5 | 4 | sbcbii 3772 |
. . . . 5
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
𝜑 ↔ [(𝑎 ↾ (1...𝑁)) / 𝑢]∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
[(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑) |
6 | | sbc2rex 40525 |
. . . . 5
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢]∃𝑥 ∈ ℕ0
∃𝑦 ∈
ℕ0 [(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
[(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑) |
7 | 5, 6 | bitri 274 |
. . . 4
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
𝜑 ↔ ∃𝑥 ∈ ℕ0
∃𝑦 ∈
ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑) |
8 | 7 | rabbii 3397 |
. . 3
⊢ {𝑎 ∈ (ℕ0
↑m (1...𝐿))
∣ [(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
𝜑} = {𝑎 ∈ (ℕ0
↑m (1...𝐿))
∣ ∃𝑥 ∈
ℕ0 ∃𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑} |
9 | | rexfrabdioph.2 |
. . . . . . 7
⊢ 𝐿 = (𝑀 + 1) |
10 | | rexfrabdioph.1 |
. . . . . . . . 9
⊢ 𝑀 = (𝑁 + 1) |
11 | | nn0p1nn 12202 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
12 | 10, 11 | eqeltrid 2843 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈
ℕ) |
13 | 12 | peano2nnd 11920 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ) |
14 | 9, 13 | eqeltrid 2843 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝐿 ∈
ℕ) |
15 | 14 | nnnn0d 12223 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝐿 ∈
ℕ0) |
16 | 15 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → 𝐿 ∈
ℕ0) |
17 | | sbcrot3 40529 |
. . . . . . . . . 10
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ [(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑) |
18 | | sbcrot3 40529 |
. . . . . . . . . . . . 13
⊢
([(𝑡‘𝐽) / 𝑦][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ [(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐽) / 𝑦]𝜑) |
19 | 18 | sbcbii 3772 |
. . . . . . . . . . . 12
⊢
([(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ [(𝑡‘𝐾) / 𝑥][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐽) / 𝑦]𝜑) |
20 | | sbcrot3 40529 |
. . . . . . . . . . . 12
⊢
([(𝑡‘𝐾) / 𝑥][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
21 | 19, 20 | bitri 274 |
. . . . . . . . . . 11
⊢
([(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ [(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
22 | 21 | sbcbii 3772 |
. . . . . . . . . 10
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
23 | 17, 22 | bitr3i 276 |
. . . . . . . . 9
⊢
([(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
24 | 23 | sbcbii 3772 |
. . . . . . . 8
⊢
([(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
25 | | reseq1 5874 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁))) |
26 | 25 | sbccomieg 40531 |
. . . . . . . . 9
⊢
([(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
27 | | fzssp1 13228 |
. . . . . . . . . . . . 13
⊢
(1...𝑁) ⊆
(1...(𝑁 +
1)) |
28 | 10 | oveq2i 7266 |
. . . . . . . . . . . . 13
⊢
(1...𝑀) =
(1...(𝑁 +
1)) |
29 | 27, 28 | sseqtrri 3954 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
(1...𝑀) |
30 | | fzssp1 13228 |
. . . . . . . . . . . . 13
⊢
(1...𝑀) ⊆
(1...(𝑀 +
1)) |
31 | 9 | oveq2i 7266 |
. . . . . . . . . . . . 13
⊢
(1...𝐿) =
(1...(𝑀 +
1)) |
32 | 30, 31 | sseqtrri 3954 |
. . . . . . . . . . . 12
⊢
(1...𝑀) ⊆
(1...𝐿) |
33 | 29, 32 | sstri 3926 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(1...𝐿) |
34 | | resabs1 5910 |
. . . . . . . . . . 11
⊢
((1...𝑁) ⊆
(1...𝐿) → ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁))) |
35 | | dfsbcq 3713 |
. . . . . . . . . . 11
⊢ (((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
36 | 33, 34, 35 | mp2b 10 |
. . . . . . . . . 10
⊢
([((𝑡 ↾
(1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
37 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎‘𝑀) = ((𝑡 ↾ (1...𝐿))‘𝑀)) |
38 | 37 | sbccomieg 40531 |
. . . . . . . . . . . 12
⊢
([(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
39 | | elfz1end 13215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀)) |
40 | 12, 39 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈ (1...𝑀)) |
41 | 32, 40 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈ (1...𝐿)) |
42 | | fvres 6775 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡‘𝑀)) |
43 | | dfsbcq 3713 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡‘𝑀) → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
44 | 41, 42, 43 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ ([((𝑡 ↾
(1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
45 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑡 ∈ V |
46 | 45 | resex 5928 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ↾ (1...𝐿)) ∈ V |
47 | | fveq1 6755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎‘𝐿) = ((𝑡 ↾ (1...𝐿))‘𝐿)) |
48 | 47 | sbcco3gw 4353 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ↾ (1...𝐿)) ∈ V → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
49 | 46, 48 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
([(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑) |
50 | | elfz1end 13215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 ∈ ℕ ↔ 𝐿 ∈ (1...𝐿)) |
51 | 14, 50 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ 𝐿 ∈ (1...𝐿)) |
52 | | fvres 6775 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡‘𝐿)) |
53 | | dfsbcq 3713 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡‘𝐿) → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
54 | 51, 52, 53 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ ([((𝑡 ↾
(1...𝐿))‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
55 | 49, 54 | syl5bb 282 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
56 | 55 | sbcbidv 3770 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
57 | 44, 56 | bitrd 278 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ ([((𝑡 ↾
(1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
58 | 38, 57 | syl5bb 282 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
59 | 58 | sbcbidv 3770 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
60 | 36, 59 | syl5bb 282 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ([((𝑡 ↾
(1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
61 | 26, 60 | syl5bb 282 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
62 | 24, 61 | syl5bb 282 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑)) |
63 | 62 | rabbidv 3404 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ {𝑡 ∈
(ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑} = {𝑡 ∈ (ℕ0
↑m (1...𝐽))
∣ [(𝑡 ↾
(1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑}) |
64 | 63 | eleq1d 2823 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ({𝑡 ∈
(ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽) ↔ {𝑡 ∈ (ℕ0
↑m (1...𝐽))
∣ [(𝑡 ↾
(1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽))) |
65 | 64 | biimpar 477 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑡 ∈ (ℕ0
↑m (1...𝐽))
∣ [(𝑡 ↾
(1...𝐿)) / 𝑎][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽)) |
66 | | rexfrabdioph.3 |
. . . . 5
⊢ 𝐾 = (𝐿 + 1) |
67 | | rexfrabdioph.4 |
. . . . 5
⊢ 𝐽 = (𝐾 + 1) |
68 | 66, 67 | 2rexfrabdioph 40534 |
. . . 4
⊢ ((𝐿 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0
↑m (1...𝐿))
∣ ∃𝑥 ∈
ℕ0 ∃𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) |
69 | 16, 65, 68 | syl2anc 583 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0
↑m (1...𝐿))
∣ ∃𝑥 ∈
ℕ0 ∃𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) |
70 | 8, 69 | eqeltrid 2843 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0
↑m (1...𝐿))
∣ [(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
𝜑} ∈ (Dioph‘𝐿)) |
71 | 10, 9 | 2rexfrabdioph 40534 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ {𝑎 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑎‘𝐿) / 𝑤]∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0
𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
∃𝑦 ∈
ℕ0 𝜑} ∈
(Dioph‘𝑁)) |
72 | 70, 71 | syldan 590 |
1
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
∃𝑦 ∈
ℕ0 𝜑} ∈
(Dioph‘𝑁)) |