Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4rexfrabdioph Structured version   Visualization version   GIF version

Theorem 4rexfrabdioph 41179
Description: Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
rexfrabdioph.4 𝐽 = (𝐾 + 1)
Assertion
Ref Expression
4rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝑥,𝑦,𝐽   𝑡,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥,𝑦   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥,𝑦   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑣,𝑢)

Proof of Theorem 4rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2sbcrex 41165 . . . . . . 7 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑦 ∈ ℕ0 𝜑)
2 2sbcrex 41165 . . . . . . . 8 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
32rexbii 3093 . . . . . . 7 (∃𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
41, 3bitri 274 . . . . . 6 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
54sbcbii 3802 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
6 sbc2rex 41168 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
75, 6bitri 274 . . . 4 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
87rabbii 3411 . . 3 {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑}
9 rexfrabdioph.2 . . . . . . 7 𝐿 = (𝑀 + 1)
10 rexfrabdioph.1 . . . . . . . . 9 𝑀 = (𝑁 + 1)
11 nn0p1nn 12461 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1210, 11eqeltrid 2836 . . . . . . . 8 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
1312peano2nnd 12179 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
149, 13eqeltrid 2836 . . . . . 6 (𝑁 ∈ ℕ0𝐿 ∈ ℕ)
1514nnnn0d 12482 . . . . 5 (𝑁 ∈ ℕ0𝐿 ∈ ℕ0)
1615adantr 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → 𝐿 ∈ ℕ0)
17 sbcrot3 41172 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
18 sbcrot3 41172 . . . . . . . . . . . . 13 ([(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐽) / 𝑦]𝜑)
1918sbcbii 3802 . . . . . . . . . . . 12 ([(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐽) / 𝑦]𝜑)
20 sbcrot3 41172 . . . . . . . . . . . 12 ([(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐽) / 𝑦]𝜑[(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
2119, 20bitri 274 . . . . . . . . . . 11 ([(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
2221sbcbii 3802 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
2317, 22bitr3i 276 . . . . . . . . 9 ([(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
2423sbcbii 3802 . . . . . . . 8 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
25 reseq1 5936 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)))
2625sbccomieg 41174 . . . . . . . . 9 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
27 fzssp1 13494 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (1...(𝑁 + 1))
2810oveq2i 7373 . . . . . . . . . . . . 13 (1...𝑀) = (1...(𝑁 + 1))
2927, 28sseqtrri 3984 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...𝑀)
30 fzssp1 13494 . . . . . . . . . . . . 13 (1...𝑀) ⊆ (1...(𝑀 + 1))
319oveq2i 7373 . . . . . . . . . . . . 13 (1...𝐿) = (1...(𝑀 + 1))
3230, 31sseqtrri 3984 . . . . . . . . . . . 12 (1...𝑀) ⊆ (1...𝐿)
3329, 32sstri 3956 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝐿)
34 resabs1 5972 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝐿) → ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
35 dfsbcq 3744 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
3633, 34, 35mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
37 fveq1 6846 . . . . . . . . . . . . 13 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝐿))‘𝑀))
3837sbccomieg 41174 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
39 elfz1end 13481 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
4012, 39sylib 217 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
4132, 40sselid 3945 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝐿))
42 fvres 6866 . . . . . . . . . . . . . 14 (𝑀 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀))
43 dfsbcq 3744 . . . . . . . . . . . . . 14 (((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
4441, 42, 433syl 18 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
45 vex 3450 . . . . . . . . . . . . . . . . 17 𝑡 ∈ V
4645resex 5990 . . . . . . . . . . . . . . . 16 (𝑡 ↾ (1...𝐿)) ∈ V
47 fveq1 6846 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝐿) = ((𝑡 ↾ (1...𝐿))‘𝐿))
4847sbcco3gw 4387 . . . . . . . . . . . . . . . 16 ((𝑡 ↾ (1...𝐿)) ∈ V → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
4946, 48ax-mp 5 . . . . . . . . . . . . . . 15 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
50 elfz1end 13481 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ ↔ 𝐿 ∈ (1...𝐿))
5114, 50sylib 217 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝐿 ∈ (1...𝐿))
52 fvres 6866 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿))
53 dfsbcq 3744 . . . . . . . . . . . . . . . 16 (((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿) → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5451, 52, 533syl 18 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5549, 54bitrid 282 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5655sbcbidv 3801 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5744, 56bitrd 278 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5838, 57bitrid 282 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5958sbcbidv 3801 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
6036, 59bitrid 282 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
6126, 60bitrid 282 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
6224, 61bitrid 282 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
6362rabbidv 3413 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} = {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑})
6463eleq1d 2817 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽) ↔ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)))
6564biimpar 478 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽))
66 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
67 rexfrabdioph.4 . . . . 5 𝐽 = (𝐾 + 1)
6866, 672rexfrabdioph 41177 . . . 4 ((𝐿 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
6916, 65, 68syl2anc 584 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
708, 69eqeltrid 2836 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿))
7110, 92rexfrabdioph 41177 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
7270, 71syldan 591 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3069  {crab 3405  Vcvv 3446  [wsbc 3742  wss 3913  cres 5640  cfv 6501  (class class class)co 7362  m cmap 8772  1c1 11061   + caddc 11063  cn 12162  0cn0 12422  ...cfz 13434  Diophcdioph 41136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-fz 13435  df-hash 14241  df-mzpcl 41104  df-mzp 41105  df-dioph 41137
This theorem is referenced by:  6rexfrabdioph  41180
  Copyright terms: Public domain W3C validator