Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4rexfrabdioph Structured version   Visualization version   GIF version

Theorem 4rexfrabdioph 40536
Description: Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
rexfrabdioph.4 𝐽 = (𝐾 + 1)
Assertion
Ref Expression
4rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝑥,𝑦,𝐽   𝑡,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥,𝑦   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥,𝑦   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑣,𝑢)

Proof of Theorem 4rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2sbcrex 40522 . . . . . . 7 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑦 ∈ ℕ0 𝜑)
2 2sbcrex 40522 . . . . . . . 8 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
32rexbii 3177 . . . . . . 7 (∃𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
41, 3bitri 274 . . . . . 6 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
54sbcbii 3772 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
6 sbc2rex 40525 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
75, 6bitri 274 . . . 4 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
87rabbii 3397 . . 3 {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑}
9 rexfrabdioph.2 . . . . . . 7 𝐿 = (𝑀 + 1)
10 rexfrabdioph.1 . . . . . . . . 9 𝑀 = (𝑁 + 1)
11 nn0p1nn 12202 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1210, 11eqeltrid 2843 . . . . . . . 8 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
1312peano2nnd 11920 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
149, 13eqeltrid 2843 . . . . . 6 (𝑁 ∈ ℕ0𝐿 ∈ ℕ)
1514nnnn0d 12223 . . . . 5 (𝑁 ∈ ℕ0𝐿 ∈ ℕ0)
1615adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → 𝐿 ∈ ℕ0)
17 sbcrot3 40529 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
18 sbcrot3 40529 . . . . . . . . . . . . 13 ([(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐽) / 𝑦]𝜑)
1918sbcbii 3772 . . . . . . . . . . . 12 ([(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐽) / 𝑦]𝜑)
20 sbcrot3 40529 . . . . . . . . . . . 12 ([(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐽) / 𝑦]𝜑[(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
2119, 20bitri 274 . . . . . . . . . . 11 ([(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
2221sbcbii 3772 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
2317, 22bitr3i 276 . . . . . . . . 9 ([(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
2423sbcbii 3772 . . . . . . . 8 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
25 reseq1 5874 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)))
2625sbccomieg 40531 . . . . . . . . 9 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
27 fzssp1 13228 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (1...(𝑁 + 1))
2810oveq2i 7266 . . . . . . . . . . . . 13 (1...𝑀) = (1...(𝑁 + 1))
2927, 28sseqtrri 3954 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...𝑀)
30 fzssp1 13228 . . . . . . . . . . . . 13 (1...𝑀) ⊆ (1...(𝑀 + 1))
319oveq2i 7266 . . . . . . . . . . . . 13 (1...𝐿) = (1...(𝑀 + 1))
3230, 31sseqtrri 3954 . . . . . . . . . . . 12 (1...𝑀) ⊆ (1...𝐿)
3329, 32sstri 3926 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝐿)
34 resabs1 5910 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝐿) → ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
35 dfsbcq 3713 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
3633, 34, 35mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
37 fveq1 6755 . . . . . . . . . . . . 13 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝐿))‘𝑀))
3837sbccomieg 40531 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
39 elfz1end 13215 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
4012, 39sylib 217 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
4132, 40sselid 3915 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝐿))
42 fvres 6775 . . . . . . . . . . . . . 14 (𝑀 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀))
43 dfsbcq 3713 . . . . . . . . . . . . . 14 (((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
4441, 42, 433syl 18 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
45 vex 3426 . . . . . . . . . . . . . . . . 17 𝑡 ∈ V
4645resex 5928 . . . . . . . . . . . . . . . 16 (𝑡 ↾ (1...𝐿)) ∈ V
47 fveq1 6755 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝐿) = ((𝑡 ↾ (1...𝐿))‘𝐿))
4847sbcco3gw 4353 . . . . . . . . . . . . . . . 16 ((𝑡 ↾ (1...𝐿)) ∈ V → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
4946, 48ax-mp 5 . . . . . . . . . . . . . . 15 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑)
50 elfz1end 13215 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ ↔ 𝐿 ∈ (1...𝐿))
5114, 50sylib 217 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝐿 ∈ (1...𝐿))
52 fvres 6775 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿))
53 dfsbcq 3713 . . . . . . . . . . . . . . . 16 (((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿) → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5451, 52, 533syl 18 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5549, 54syl5bb 282 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5655sbcbidv 3770 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5744, 56bitrd 278 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5838, 57syl5bb 282 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
5958sbcbidv 3770 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
6036, 59syl5bb 282 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
6126, 60syl5bb 282 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
6224, 61syl5bb 282 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑))
6362rabbidv 3404 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} = {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑})
6463eleq1d 2823 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽) ↔ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)))
6564biimpar 477 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽))
66 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
67 rexfrabdioph.4 . . . . 5 𝐽 = (𝐾 + 1)
6866, 672rexfrabdioph 40534 . . . 4 ((𝐿 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
6916, 65, 68syl2anc 583 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
708, 69eqeltrid 2843 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿))
7110, 92rexfrabdioph 40534 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
7270, 71syldan 590 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  [wsbc 3711  wss 3883  cres 5582  cfv 6418  (class class class)co 7255  m cmap 8573  1c1 10803   + caddc 10805  cn 11903  0cn0 12163  ...cfz 13168  Diophcdioph 40493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-mzpcl 40461  df-mzp 40462  df-dioph 40494
This theorem is referenced by:  6rexfrabdioph  40537
  Copyright terms: Public domain W3C validator