Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2rexfrabdioph Structured version   Visualization version   GIF version

Theorem 2rexfrabdioph 42916
Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
Assertion
Ref Expression
2rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝐿   𝑡,𝑀,𝑢,𝑣,𝑤   𝑡,𝑁,𝑢,𝑣,𝑤   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢)

Proof of Theorem 2rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2sbcrex 42904 . . . 4 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
21rabbii 3401 . . 3 {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑}
3 rexfrabdioph.1 . . . . . 6 𝑀 = (𝑁 + 1)
4 peano2nn0 12430 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
53, 4eqeltrid 2837 . . . . 5 (𝑁 ∈ ℕ0𝑀 ∈ ℕ0)
65adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → 𝑀 ∈ ℕ0)
7 sbcrot3 42911 . . . . . . . . 9 ([(𝑡𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑)
87sbcbii 3794 . . . . . . . 8 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑)
9 reseq1 5928 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)))
109sbccomieg 42913 . . . . . . . . 9 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑)
11 fzssp1 13471 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...(𝑁 + 1))
123oveq2i 7365 . . . . . . . . . . . 12 (1...𝑀) = (1...(𝑁 + 1))
1311, 12sseqtrri 3980 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝑀)
14 resabs1 5961 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝑀) → ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
15 dfsbcq 3739 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑))
1613, 14, 15mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑)
17 vex 3441 . . . . . . . . . . . . . 14 𝑡 ∈ V
1817resex 5984 . . . . . . . . . . . . 13 (𝑡 ↾ (1...𝑀)) ∈ V
19 fveq1 6829 . . . . . . . . . . . . . 14 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝑀))‘𝑀))
2019sbcco3gw 4374 . . . . . . . . . . . . 13 ((𝑡 ↾ (1...𝑀)) ∈ V → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑))
2118, 20ax-mp 5 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑)
22 nn0p1nn 12429 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
233, 22eqeltrid 2837 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
24 elfz1end 13458 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
2523, 24sylib 218 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
26 fvres 6849 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝑀) → ((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀))
27 dfsbcq 3739 . . . . . . . . . . . . 13 (((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑))
2825, 26, 273syl 18 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑))
2921, 28bitrid 283 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑))
3029sbcbidv 3793 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑))
3116, 30bitrid 283 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑))
3210, 31bitrid 283 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑))
338, 32bitr2id 284 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑))
3433rabbidv 3403 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} = {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑})
3534eleq1d 2818 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿) ↔ {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐿)))
3635biimpa 476 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐿))
37 rexfrabdioph.2 . . . . 5 𝐿 = (𝑀 + 1)
3837rexfrabdioph 42915 . . . 4 ((𝑀 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐿)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
396, 36, 38syl2anc 584 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
402, 39eqeltrid 2837 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀))
413rexfrabdioph 42915 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
4240, 41syldan 591 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437  [wsbc 3737  wss 3898  cres 5623  cfv 6488  (class class class)co 7354  m cmap 8758  1c1 11016   + caddc 11018  cn 12134  0cn0 12390  ...cfz 13411  Diophcdioph 42875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-oadd 8397  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-dju 9803  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-hash 14242  df-mzpcl 42843  df-mzp 42844  df-dioph 42876
This theorem is referenced by:  3rexfrabdioph  42917  4rexfrabdioph  42918  6rexfrabdioph  42919
  Copyright terms: Public domain W3C validator