Step | Hyp | Ref
| Expression |
1 | | 2sbcrex 40801 |
. . . 4
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑) |
2 | 1 | rabbii 3415 |
. . 3
⊢ {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ [(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ ∃𝑤 ∈
ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} |
3 | | rexfrabdioph.1 |
. . . . . 6
⊢ 𝑀 = (𝑁 + 1) |
4 | | peano2nn0 12323 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
5 | 3, 4 | eqeltrid 2841 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈
ℕ0) |
6 | 5 | adantr 482 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → 𝑀 ∈
ℕ0) |
7 | | sbcrot3 40808 |
. . . . . . . . 9
⊢
([(𝑡‘𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑 ↔ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑) |
8 | 7 | sbcbii 3781 |
. . . . . . . 8
⊢
([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑 ↔ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑) |
9 | | reseq1 5897 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁))) |
10 | 9 | sbccomieg 40810 |
. . . . . . . . 9
⊢
([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑) |
11 | | fzssp1 13349 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
(1...(𝑁 +
1)) |
12 | 3 | oveq2i 7318 |
. . . . . . . . . . . 12
⊢
(1...𝑀) =
(1...(𝑁 +
1)) |
13 | 11, 12 | sseqtrri 3963 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(1...𝑀) |
14 | | resabs1 5933 |
. . . . . . . . . . 11
⊢
((1...𝑁) ⊆
(1...𝑀) → ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁))) |
15 | | dfsbcq 3723 |
. . . . . . . . . . 11
⊢ (((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑)) |
16 | 13, 14, 15 | mp2b 10 |
. . . . . . . . . 10
⊢
([((𝑡 ↾
(1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑) |
17 | | vex 3441 |
. . . . . . . . . . . . . 14
⊢ 𝑡 ∈ V |
18 | 17 | resex 5951 |
. . . . . . . . . . . . 13
⊢ (𝑡 ↾ (1...𝑀)) ∈ V |
19 | | fveq1 6803 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎‘𝑀) = ((𝑡 ↾ (1...𝑀))‘𝑀)) |
20 | 19 | sbcco3gw 4362 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ↾ (1...𝑀)) ∈ V → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑)) |
21 | 18, 20 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑) |
22 | | nn0p1nn 12322 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
23 | 3, 22 | eqeltrid 2841 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈
ℕ) |
24 | | elfz1end 13336 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀)) |
25 | 23, 24 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈ (1...𝑀)) |
26 | | fvres 6823 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (1...𝑀) → ((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡‘𝑀)) |
27 | | dfsbcq 3723 |
. . . . . . . . . . . . 13
⊢ (((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡‘𝑀) → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑)) |
28 | 25, 26, 27 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ ([((𝑡 ↾
(1...𝑀))‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑)) |
29 | 21, 28 | bitrid 283 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑)) |
30 | 29 | sbcbidv 3780 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑)) |
31 | 16, 30 | bitrid 283 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ([((𝑡 ↾
(1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑)) |
32 | 10, 31 | bitrid 283 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑)) |
33 | 8, 32 | bitr2id 284 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑 ↔ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑)) |
34 | 33 | rabbidv 3421 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ {𝑡 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} = {𝑡 ∈ (ℕ0
↑m (1...𝐿))
∣ [(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑}) |
35 | 34 | eleq1d 2821 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ({𝑡 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿) ↔ {𝑡 ∈ (ℕ0
↑m (1...𝐿))
∣ [(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐿))) |
36 | 35 | biimpa 478 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑡 ∈ (ℕ0
↑m (1...𝐿))
∣ [(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐿)) |
37 | | rexfrabdioph.2 |
. . . . 5
⊢ 𝐿 = (𝑀 + 1) |
38 | 37 | rexfrabdioph 40812 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐿)) → {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ ∃𝑤 ∈
ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) |
39 | 6, 36, 38 | syl2anc 585 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ ∃𝑤 ∈
ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) |
40 | 2, 39 | eqeltrid 2841 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ [(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀)) |
41 | 3 | rexfrabdioph 40812 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ {𝑎 ∈
(ℕ0 ↑m (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 ∃𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
42 | 40, 41 | syldan 592 |
1
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 ∃𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |