| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcrex | Structured version Visualization version GIF version | ||
| Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcrex | ⊢ ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 2 | sbcrext 3819 | . 2 ⊢ (Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnfc 2879 ∃wrex 3056 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-v 3438 df-sbc 3737 |
| This theorem is referenced by: 2nreu 4391 ac6sfi 9168 csbwrdg 14451 rexfiuz 15255 2sbcrex 42887 sbc2rex 42890 iccelpart 47543 |
| Copyright terms: Public domain | W3C validator |