Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sbcrexOLD Structured version   Visualization version   GIF version

Theorem 2sbcrexOLD 42889
Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7390 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
2sbcrex.1 𝐴 ∈ V
2sbcrex.2 𝐵 ∈ V
Assertion
Ref Expression
2sbcrexOLD ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐶,𝑏   𝑎,𝑐   𝑏,𝑐   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑐)

Proof of Theorem 2sbcrexOLD
StepHypRef Expression
1 2sbcrex.2 . . . 4 𝐵 ∈ V
2 sbcrexgOLD 42888 . . . 4 (𝐵 ∈ V → ([𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐵 / 𝑏]𝜑))
31, 2ax-mp 5 . . 3 ([𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐵 / 𝑏]𝜑)
43sbcbii 3793 . 2 ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑[𝐴 / 𝑎]𝑐𝐶 [𝐵 / 𝑏]𝜑)
5 2sbcrex.1 . . 3 𝐴 ∈ V
6 sbcrexgOLD 42888 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑐𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑))
75, 6ax-mp 5 . 2 ([𝐴 / 𝑎]𝑐𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
84, 7bitri 275 1 ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  wrex 3056  Vcvv 3436  [wsbc 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-sbc 3737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator