![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sbcrexOLD | Structured version Visualization version GIF version |
Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 6919 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
2sbcrex.1 | ⊢ 𝐴 ∈ V |
2sbcrex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
2sbcrexOLD | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sbcrex.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | sbcrexgOLD 38135 | . . . 4 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ([𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑) |
4 | 3 | sbcbii 3689 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑) |
5 | 2sbcrex.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | sbcrexgOLD 38135 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
8 | 4, 7 | bitri 267 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2157 ∃wrex 3090 Vcvv 3385 [wsbc 3633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-v 3387 df-sbc 3634 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |