Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sbcrexOLD | Structured version Visualization version GIF version |
Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7294 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
2sbcrex.1 | ⊢ 𝐴 ∈ V |
2sbcrex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
2sbcrexOLD | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sbcrex.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | sbcrexgOLD 40495 | . . . 4 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ([𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑) |
4 | 3 | sbcbii 3773 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑) |
5 | 2sbcrex.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | sbcrexgOLD 40495 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
8 | 4, 7 | bitri 278 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2112 ∃wrex 3065 Vcvv 3423 [wsbc 3712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-13 2373 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-sbc 3713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |