| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sbcrexOLD | Structured version Visualization version GIF version | ||
| Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7458 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| 2sbcrex.1 | ⊢ 𝐴 ∈ V |
| 2sbcrex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| 2sbcrexOLD | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sbcrex.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | sbcrexgOLD 42737 | . . . 4 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ([𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑) |
| 4 | 3 | sbcbii 3829 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑) |
| 5 | 2sbcrex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | sbcrexgOLD 42737 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
| 8 | 4, 7 | bitri 275 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 ∃wrex 3059 Vcvv 3464 [wsbc 3772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-sbc 3773 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |