Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sbcrexOLD Structured version   Visualization version   GIF version

Theorem 2sbcrexOLD 39389
 Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7201 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
2sbcrex.1 𝐴 ∈ V
2sbcrex.2 𝐵 ∈ V
Assertion
Ref Expression
2sbcrexOLD ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐶,𝑏   𝑎,𝑐   𝑏,𝑐   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑐)

Proof of Theorem 2sbcrexOLD
StepHypRef Expression
1 2sbcrex.2 . . . 4 𝐵 ∈ V
2 sbcrexgOLD 39388 . . . 4 (𝐵 ∈ V → ([𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐵 / 𝑏]𝜑))
31, 2ax-mp 5 . . 3 ([𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐵 / 𝑏]𝜑)
43sbcbii 3832 . 2 ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑[𝐴 / 𝑎]𝑐𝐶 [𝐵 / 𝑏]𝜑)
5 2sbcrex.1 . . 3 𝐴 ∈ V
6 sbcrexgOLD 39388 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑐𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑))
75, 6ax-mp 5 . 2 ([𝐴 / 𝑎]𝑐𝐶 [𝐵 / 𝑏]𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
84, 7bitri 277 1 ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∈ wcel 2113  ∃wrex 3142  Vcvv 3497  [wsbc 3775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-13 2389  ax-ext 2796 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-sbc 3776 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator