Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3unrab Structured version   Visualization version   GIF version

Theorem 3unrab 32485
Description: Union of three restricted class abstractions. (Contributed by Thierry Arnoux, 6-Jul-2025.)
Assertion
Ref Expression
3unrab (({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) ∪ {𝑥𝐴𝜒}) = {𝑥𝐴 ∣ (𝜑𝜓𝜒)}

Proof of Theorem 3unrab
StepHypRef Expression
1 unrab 4264 . 2 ({𝑥𝐴 ∣ (𝜑𝜓)} ∪ {𝑥𝐴𝜒}) = {𝑥𝐴 ∣ ((𝜑𝜓) ∨ 𝜒)}
2 unrab 4264 . . 3 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
32uneq1i 4113 . 2 (({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) ∪ {𝑥𝐴𝜒}) = ({𝑥𝐴 ∣ (𝜑𝜓)} ∪ {𝑥𝐴𝜒})
4 df-3or 1087 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
54rabbii 3401 . 2 {𝑥𝐴 ∣ (𝜑𝜓𝜒)} = {𝑥𝐴 ∣ ((𝜑𝜓) ∨ 𝜒)}
61, 3, 53eqtr4i 2766 1 (({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) ∪ {𝑥𝐴𝜒}) = {𝑥𝐴 ∣ (𝜑𝜓𝜒)}
Colors of variables: wff setvar class
Syntax hints:  wo 847  w3o 1085   = wceq 1541  {crab 3396  cun 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-un 3903
This theorem is referenced by:  constrfin  33780
  Copyright terms: Public domain W3C validator