| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3unrab | Structured version Visualization version GIF version | ||
| Description: Union of three restricted class abstractions. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| Ref | Expression |
|---|---|
| 3unrab | ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unrab 4290 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ ((𝜑 ∨ 𝜓) ∨ 𝜒)} | |
| 2 | unrab 4290 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | |
| 3 | 2 | uneq1i 4139 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = ({𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| 4 | df-3or 1087 | . . 3 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 5 | 4 | rabbii 3421 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} = {𝑥 ∈ 𝐴 ∣ ((𝜑 ∨ 𝜓) ∨ 𝜒)} |
| 6 | 1, 3, 5 | 3eqtr4i 2768 | 1 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∨ w3o 1085 = wceq 1540 {crab 3415 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-un 3931 |
| This theorem is referenced by: constrfin 33780 |
| Copyright terms: Public domain | W3C validator |