![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3unrab | Structured version Visualization version GIF version |
Description: Union of three restricted class abstractions. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
Ref | Expression |
---|---|
3unrab | ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unrab 4321 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ ((𝜑 ∨ 𝜓) ∨ 𝜒)} | |
2 | unrab 4321 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | |
3 | 2 | uneq1i 4174 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = ({𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
4 | df-3or 1087 | . . 3 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
5 | 4 | rabbii 3439 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} = {𝑥 ∈ 𝐴 ∣ ((𝜑 ∨ 𝜓) ∨ 𝜒)} |
6 | 1, 3, 5 | 3eqtr4i 2773 | 1 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) ∪ {𝑥 ∈ 𝐴 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 ∨ w3o 1085 = wceq 1537 {crab 3433 ∪ cun 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-un 3968 |
This theorem is referenced by: constrfin 33751 |
Copyright terms: Public domain | W3C validator |