| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabsstp | Structured version Visualization version GIF version | ||
| Description: Conditions for a restricted class abstraction to be a subset of an unordered triple. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabsstp | ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 2 | dftp2 4672 | . . 3 ⊢ {𝑋, 𝑌, 𝑍} = {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)} | |
| 3 | 1, 2 | sseq12i 3994 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)}) |
| 4 | ss2ab 4042 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | |
| 5 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)) ↔ (𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)))) | |
| 6 | 5 | albii 1819 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)))) |
| 7 | df-ral 3053 | . . 3 ⊢ (∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)) ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) |
| 9 | 3, 4, 8 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 {crab 3420 ⊆ wss 3931 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |