Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabsstp Structured version   Visualization version   GIF version

Theorem rabsstp 32477
Description: Conditions for a restricted class abstraction to be a subset of an unordered triple. (Contributed by Thierry Arnoux, 6-Jul-2025.)
Assertion
Ref Expression
rabsstp ({𝑥𝑉𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥𝑉 (𝜑 → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)))
Distinct variable groups:   𝑥,𝑋   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabsstp
StepHypRef Expression
1 df-rab 3396 . . 3 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
2 dftp2 4644 . . 3 {𝑋, 𝑌, 𝑍} = {𝑥 ∣ (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)}
31, 2sseq12i 3965 . 2 ({𝑥𝑉𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ {𝑥 ∣ (𝑥𝑉𝜑)} ⊆ {𝑥 ∣ (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)})
4 ss2ab 4013 . 2 ({𝑥 ∣ (𝑥𝑉𝜑)} ⊆ {𝑥 ∣ (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)} ↔ ∀𝑥((𝑥𝑉𝜑) → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)))
5 impexp 450 . . . 4 (((𝑥𝑉𝜑) → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)) ↔ (𝑥𝑉 → (𝜑 → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍))))
65albii 1820 . . 3 (∀𝑥((𝑥𝑉𝜑) → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)) ↔ ∀𝑥(𝑥𝑉 → (𝜑 → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍))))
7 df-ral 3048 . . 3 (∀𝑥𝑉 (𝜑 → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)) ↔ ∀𝑥(𝑥𝑉 → (𝜑 → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍))))
86, 7bitr4i 278 . 2 (∀𝑥((𝑥𝑉𝜑) → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)) ↔ ∀𝑥𝑉 (𝜑 → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)))
93, 4, 83bitri 297 1 ({𝑥𝑉𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥𝑉 (𝜑 → (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  {crab 3395  wss 3902  {ctp 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-v 3438  df-un 3907  df-ss 3919  df-sn 4577  df-pr 4579  df-tp 4581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator