| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabsstp | Structured version Visualization version GIF version | ||
| Description: Conditions for a restricted class abstraction to be a subset of an unordered triplet. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabsstp | ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3436 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 2 | dftp2 4690 | . . 3 ⊢ {𝑋, 𝑌, 𝑍} = {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)} | |
| 3 | 1, 2 | sseq12i 4013 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)}) |
| 4 | ss2ab 4061 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | |
| 5 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)) ↔ (𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)))) | |
| 6 | 5 | albii 1818 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)))) |
| 7 | df-ral 3061 | . . 3 ⊢ (∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍)) ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) |
| 9 | 3, 4, 8 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌, 𝑍} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2713 ∀wral 3060 {crab 3435 ⊆ wss 3950 {ctp 4629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rab 3436 df-v 3481 df-un 3955 df-ss 3967 df-sn 4626 df-pr 4628 df-tp 4630 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |