| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unrab | Structured version Visualization version GIF version | ||
| Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| unrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3397 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | df-rab 3397 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 3 | 1, 2 | uneq12i 4115 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 4 | df-rab 3397 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} | |
| 5 | unab 4257 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))} | |
| 6 | andi 1009 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 7 | 6 | abbii 2800 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
| 8 | 5, 7 | eqtr4i 2759 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} |
| 9 | 4, 8 | eqtr4i 2759 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 10 | 3, 9 | eqtr4i 2759 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 {cab 2711 {crab 3396 ∪ cun 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-un 3903 |
| This theorem is referenced by: rabxm 4339 kmlem3 10051 hashbclem 14361 phiprmpw 16689 mndpsuppss 18675 efgsfo 19653 dsmmacl 21680 rrxmvallem 25332 mumul 27119 ppiub 27143 lgsquadlem2 27320 lrold 27843 edglnl 29123 numclwwlk3lem2lem 30365 3unrab 32485 zarclsun 33904 hasheuni 34119 measvuni 34248 aean 34278 subfacp1lem6 35250 lineunray 36212 cnambfre 37728 itg2addnclem2 37732 iblabsnclem 37743 orrabdioph 42898 sqrtcvallem1 43748 undisjrab 44423 dfsclnbgr6 47982 |
| Copyright terms: Public domain | W3C validator |