Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unrab | Structured version Visualization version GIF version |
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
unrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | df-rab 3073 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
3 | 1, 2 | uneq12i 4095 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
4 | df-rab 3073 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} | |
5 | unab 4232 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))} | |
6 | andi 1005 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
7 | 6 | abbii 2808 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
8 | 5, 7 | eqtr4i 2769 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} |
9 | 4, 8 | eqtr4i 2769 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
10 | 3, 9 | eqtr4i 2769 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 {cab 2715 {crab 3068 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 |
This theorem is referenced by: rabxm 4320 kmlem3 9908 hashbclem 14164 phiprmpw 16477 efgsfo 19345 dsmmacl 20948 rrxmvallem 24568 mumul 26330 ppiub 26352 lgsquadlem2 26529 edglnl 27513 numclwwlk3lem2lem 28747 zarclsun 31820 hasheuni 32053 measvuni 32182 aean 32212 subfacp1lem6 33147 lrold 34077 lineunray 34449 cnambfre 35825 itg2addnclem2 35829 iblabsnclem 35840 orrabdioph 40603 sqrtcvallem1 41239 undisjrab 41924 mndpsuppss 45707 |
Copyright terms: Public domain | W3C validator |