MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unrab Structured version   Visualization version   GIF version

Theorem unrab 4236
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
unrab ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}

Proof of Theorem unrab
StepHypRef Expression
1 df-rab 3072 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 3072 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2uneq12i 4091 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)})
4 df-rab 3072 . . 3 {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
5 unab 4229 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓))}
6 andi 1004 . . . . 5 ((𝑥𝐴 ∧ (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓)))
76abbii 2809 . . . 4 {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))} = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓))}
85, 7eqtr4i 2769 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
94, 8eqtr4i 2769 . 2 {𝑥𝐴 ∣ (𝜑𝜓)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)})
103, 9eqtr4i 2769 1 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-un 3888
This theorem is referenced by:  rabxm  4317  kmlem3  9839  hashbclem  14092  phiprmpw  16405  efgsfo  19260  dsmmacl  20858  rrxmvallem  24473  mumul  26235  ppiub  26257  lgsquadlem2  26434  edglnl  27416  numclwwlk3lem2lem  28648  zarclsun  31722  hasheuni  31953  measvuni  32082  aean  32112  subfacp1lem6  33047  lrold  34004  lineunray  34376  cnambfre  35752  itg2addnclem2  35756  iblabsnclem  35767  orrabdioph  40519  sqrtcvallem1  41128  undisjrab  41813  mndpsuppss  45595
  Copyright terms: Public domain W3C validator