MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unrab Structured version   Visualization version   GIF version

Theorem unrab 4321
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
unrab ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}

Proof of Theorem unrab
StepHypRef Expression
1 df-rab 3434 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 3434 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2uneq12i 4176 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)})
4 df-rab 3434 . . 3 {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
5 unab 4314 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓))}
6 andi 1009 . . . . 5 ((𝑥𝐴 ∧ (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓)))
76abbii 2807 . . . 4 {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))} = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓))}
85, 7eqtr4i 2766 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
94, 8eqtr4i 2766 . 2 {𝑥𝐴 ∣ (𝜑𝜓)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)})
103, 9eqtr4i 2766 1 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1537  wcel 2106  {cab 2712  {crab 3433  cun 3961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-un 3968
This theorem is referenced by:  rabxm  4396  kmlem3  10191  hashbclem  14488  phiprmpw  16810  mndpsuppss  18791  efgsfo  19772  dsmmacl  21779  rrxmvallem  25452  mumul  27239  ppiub  27263  lgsquadlem2  27440  lrold  27950  edglnl  29175  numclwwlk3lem2lem  30412  3unrab  32531  zarclsun  33831  hasheuni  34066  measvuni  34195  aean  34225  subfacp1lem6  35170  lineunray  36129  cnambfre  37655  itg2addnclem2  37659  iblabsnclem  37670  orrabdioph  42769  sqrtcvallem1  43621  undisjrab  44302  dfsclnbgr6  47782
  Copyright terms: Public domain W3C validator