| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unrab | Structured version Visualization version GIF version | ||
| Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| unrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3437 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | df-rab 3437 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 3 | 1, 2 | uneq12i 4166 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 4 | df-rab 3437 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} | |
| 5 | unab 4308 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))} | |
| 6 | andi 1010 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 7 | 6 | abbii 2809 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
| 8 | 5, 7 | eqtr4i 2768 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} |
| 9 | 4, 8 | eqtr4i 2768 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 10 | 3, 9 | eqtr4i 2768 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 {cab 2714 {crab 3436 ∪ cun 3949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-un 3956 |
| This theorem is referenced by: rabxm 4390 kmlem3 10193 hashbclem 14491 phiprmpw 16813 mndpsuppss 18778 efgsfo 19757 dsmmacl 21761 rrxmvallem 25438 mumul 27224 ppiub 27248 lgsquadlem2 27425 lrold 27935 edglnl 29160 numclwwlk3lem2lem 30402 3unrab 32522 zarclsun 33869 hasheuni 34086 measvuni 34215 aean 34245 subfacp1lem6 35190 lineunray 36148 cnambfre 37675 itg2addnclem2 37679 iblabsnclem 37690 orrabdioph 42792 sqrtcvallem1 43644 undisjrab 44325 dfsclnbgr6 47844 |
| Copyright terms: Public domain | W3C validator |