Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  foresf1o Structured version   Visualization version   GIF version

Theorem foresf1o 30850
Description: From a surjective function, *choose* a subset of the domain, such that the restricted function is bijective. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
foresf1o ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem foresf1o
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fornex 7798 . . . 4 (𝐴𝑉 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
21imp 407 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
3 foelrn 6982 . . . . . 6 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑧𝐴 𝑦 = (𝐹𝑧))
4 fofn 6690 . . . . . . . . . 10 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
5 eqcom 2745 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑦𝑦 = (𝐹𝑧))
6 fniniseg 6937 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)))
76biimpar 478 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ (𝐹 “ {𝑦}))
87anassrs 468 . . . . . . . . . . 11 (((𝐹 Fn 𝐴𝑧𝐴) ∧ (𝐹𝑧) = 𝑦) → 𝑧 ∈ (𝐹 “ {𝑦}))
95, 8sylan2br 595 . . . . . . . . . 10 (((𝐹 Fn 𝐴𝑧𝐴) ∧ 𝑦 = (𝐹𝑧)) → 𝑧 ∈ (𝐹 “ {𝑦}))
104, 9sylanl1 677 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝑧𝐴) ∧ 𝑦 = (𝐹𝑧)) → 𝑧 ∈ (𝐹 “ {𝑦}))
1110ex 413 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝑧𝐴) → (𝑦 = (𝐹𝑧) → 𝑧 ∈ (𝐹 “ {𝑦})))
1211reximdva 3203 . . . . . . 7 (𝐹:𝐴onto𝐵 → (∃𝑧𝐴 𝑦 = (𝐹𝑧) → ∃𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦})))
1312adantr 481 . . . . . 6 ((𝐹:𝐴onto𝐵𝑦𝐵) → (∃𝑧𝐴 𝑦 = (𝐹𝑧) → ∃𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦})))
143, 13mpd 15 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦}))
1514adantll 711 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ 𝑦𝐵) → ∃𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦}))
1615ralrimiva 3103 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∀𝑦𝐵𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦}))
17 eleq1 2826 . . . 4 (𝑧 = (𝑔𝑦) → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑔𝑦) ∈ (𝐹 “ {𝑦})))
1817ac6sg 10244 . . 3 (𝐵 ∈ V → (∀𝑦𝐵𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦}) → ∃𝑔(𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))))
192, 16, 18sylc 65 . 2 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑔(𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦})))
20 frn 6607 . . . . 5 (𝑔:𝐵𝐴 → ran 𝑔𝐴)
2120ad2antrl 725 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ran 𝑔𝐴)
22 vex 3436 . . . . . 6 𝑔 ∈ V
2322rnex 7759 . . . . 5 ran 𝑔 ∈ V
2423elpw 4537 . . . 4 (ran 𝑔 ∈ 𝒫 𝐴 ↔ ran 𝑔𝐴)
2521, 24sylibr 233 . . 3 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ran 𝑔 ∈ 𝒫 𝐴)
26 fof 6688 . . . . . 6 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2726ad2antlr 724 . . . . 5 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → 𝐹:𝐴𝐵)
2827, 21fssresd 6641 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → (𝐹 ↾ ran 𝑔):ran 𝑔𝐵)
29 ffn 6600 . . . . . 6 (𝑔:𝐵𝐴𝑔 Fn 𝐵)
3029ad2antrl 725 . . . . 5 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → 𝑔 Fn 𝐵)
31 dffn3 6613 . . . . 5 (𝑔 Fn 𝐵𝑔:𝐵⟶ran 𝑔)
3230, 31sylib 217 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → 𝑔:𝐵⟶ran 𝑔)
33 fvres 6793 . . . . . . . 8 (𝑧 ∈ ran 𝑔 → ((𝐹 ↾ ran 𝑔)‘𝑧) = (𝐹𝑧))
3433adantl 482 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ((𝐹 ↾ ran 𝑔)‘𝑧) = (𝐹𝑧))
3534fveq2d 6778 . . . . . 6 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = (𝑔‘(𝐹𝑧)))
36 nfv 1917 . . . . . . . . 9 𝑦(𝐴𝑉𝐹:𝐴onto𝐵)
37 nfv 1917 . . . . . . . . . 10 𝑦 𝑔:𝐵𝐴
38 nfra1 3144 . . . . . . . . . 10 𝑦𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦})
3937, 38nfan 1902 . . . . . . . . 9 𝑦(𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
4036, 39nfan 1902 . . . . . . . 8 𝑦((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦})))
41 nfv 1917 . . . . . . . 8 𝑦 𝑧 ∈ ran 𝑔
4240, 41nfan 1902 . . . . . . 7 𝑦(((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔)
43 simpr 485 . . . . . . . . . . 11 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝑔𝑦) = 𝑧)
4443fveq2d 6778 . . . . . . . . . 10 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝐹‘(𝑔𝑦)) = (𝐹𝑧))
454ad5antlr 732 . . . . . . . . . . 11 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → 𝐹 Fn 𝐴)
46 simplrr 775 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
4746ad2antrr 723 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
48 simplr 766 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → 𝑦𝐵)
49 rspa 3132 . . . . . . . . . . . 12 ((∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}) ∧ 𝑦𝐵) → (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
5047, 48, 49syl2anc 584 . . . . . . . . . . 11 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
51 fniniseg 6937 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝑔𝑦) ∈ (𝐹 “ {𝑦}) ↔ ((𝑔𝑦) ∈ 𝐴 ∧ (𝐹‘(𝑔𝑦)) = 𝑦)))
5251simplbda 500 . . . . . . . . . . 11 ((𝐹 Fn 𝐴 ∧ (𝑔𝑦) ∈ (𝐹 “ {𝑦})) → (𝐹‘(𝑔𝑦)) = 𝑦)
5345, 50, 52syl2anc 584 . . . . . . . . . 10 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝐹‘(𝑔𝑦)) = 𝑦)
5444, 53eqtr3d 2780 . . . . . . . . 9 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝐹𝑧) = 𝑦)
5554fveq2d 6778 . . . . . . . 8 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝑔‘(𝐹𝑧)) = (𝑔𝑦))
5655, 43eqtrd 2778 . . . . . . 7 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝑔‘(𝐹𝑧)) = 𝑧)
57 fvelrnb 6830 . . . . . . . . 9 (𝑔 Fn 𝐵 → (𝑧 ∈ ran 𝑔 ↔ ∃𝑦𝐵 (𝑔𝑦) = 𝑧))
5857biimpa 477 . . . . . . . 8 ((𝑔 Fn 𝐵𝑧 ∈ ran 𝑔) → ∃𝑦𝐵 (𝑔𝑦) = 𝑧)
5930, 58sylan 580 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ∃𝑦𝐵 (𝑔𝑦) = 𝑧)
6042, 56, 59r19.29af 3262 . . . . . 6 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘(𝐹𝑧)) = 𝑧)
6135, 60eqtrd 2778 . . . . 5 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = 𝑧)
6261ralrimiva 3103 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ∀𝑧 ∈ ran 𝑔(𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = 𝑧)
6332ffvelrnda 6961 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → (𝑔𝑦) ∈ ran 𝑔)
64 fvres 6793 . . . . . . . 8 ((𝑔𝑦) ∈ ran 𝑔 → ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = (𝐹‘(𝑔𝑦)))
6563, 64syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = (𝐹‘(𝑔𝑦)))
664ad3antlr 728 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → 𝐹 Fn 𝐴)
67 simplrr 775 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
68 simpr 485 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → 𝑦𝐵)
6967, 68, 49syl2anc 584 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
7066, 69, 52syl2anc 584 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → (𝐹‘(𝑔𝑦)) = 𝑦)
7165, 70eqtrd 2778 . . . . . 6 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = 𝑦)
7271ex 413 . . . . 5 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → (𝑦𝐵 → ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = 𝑦))
7340, 72ralrimi 3141 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ∀𝑦𝐵 ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = 𝑦)
7428, 32, 62, 732fvidf1od 7170 . . 3 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → (𝐹 ↾ ran 𝑔):ran 𝑔1-1-onto𝐵)
75 reseq2 5886 . . . . 5 (𝑥 = ran 𝑔 → (𝐹𝑥) = (𝐹 ↾ ran 𝑔))
76 id 22 . . . . 5 (𝑥 = ran 𝑔𝑥 = ran 𝑔)
77 eqidd 2739 . . . . 5 (𝑥 = ran 𝑔𝐵 = 𝐵)
7875, 76, 77f1oeq123d 6710 . . . 4 (𝑥 = ran 𝑔 → ((𝐹𝑥):𝑥1-1-onto𝐵 ↔ (𝐹 ↾ ran 𝑔):ran 𝑔1-1-onto𝐵))
7978rspcev 3561 . . 3 ((ran 𝑔 ∈ 𝒫 𝐴 ∧ (𝐹 ↾ ran 𝑔):ran 𝑔1-1-onto𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
8025, 74, 79syl2anc 584 . 2 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
8119, 80exlimddv 1938 1 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  𝒫 cpw 4533  {csn 4561  ccnv 5588  ran crn 5590  cres 5591  cima 5592   Fn wfn 6428  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-en 8734  df-r1 9522  df-rank 9523  df-card 9697  df-ac 9872
This theorem is referenced by:  rabfodom  30851
  Copyright terms: Public domain W3C validator