Step | Hyp | Ref
| Expression |
1 | | fornex 7772 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
2 | 1 | imp 406 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ V) |
3 | | foelrn 6964 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)) |
4 | | fofn 6674 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
5 | | eqcom 2745 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑧) = 𝑦 ↔ 𝑦 = (𝐹‘𝑧)) |
6 | | fniniseg 6919 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝐴 → (𝑧 ∈ (◡𝐹 “ {𝑦}) ↔ (𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) = 𝑦))) |
7 | 6 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ (𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) = 𝑦)) → 𝑧 ∈ (◡𝐹 “ {𝑦})) |
8 | 7 | anassrs 467 |
. . . . . . . . . . 11
⊢ (((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) = 𝑦) → 𝑧 ∈ (◡𝐹 “ {𝑦})) |
9 | 5, 8 | sylan2br 594 |
. . . . . . . . . 10
⊢ (((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑧)) → 𝑧 ∈ (◡𝐹 “ {𝑦})) |
10 | 4, 9 | sylanl1 676 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑧)) → 𝑧 ∈ (◡𝐹 “ {𝑦})) |
11 | 10 | ex 412 |
. . . . . . . 8
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑦 = (𝐹‘𝑧) → 𝑧 ∈ (◡𝐹 “ {𝑦}))) |
12 | 11 | reximdva 3202 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧) → ∃𝑧 ∈ 𝐴 𝑧 ∈ (◡𝐹 “ {𝑦}))) |
13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧) → ∃𝑧 ∈ 𝐴 𝑧 ∈ (◡𝐹 “ {𝑦}))) |
14 | 3, 13 | mpd 15 |
. . . . 5
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑧 ∈ 𝐴 𝑧 ∈ (◡𝐹 “ {𝑦})) |
15 | 14 | adantll 710 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑦 ∈ 𝐵) → ∃𝑧 ∈ 𝐴 𝑧 ∈ (◡𝐹 “ {𝑦})) |
16 | 15 | ralrimiva 3107 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑧 ∈ (◡𝐹 “ {𝑦})) |
17 | | eleq1 2826 |
. . . 4
⊢ (𝑧 = (𝑔‘𝑦) → (𝑧 ∈ (◡𝐹 “ {𝑦}) ↔ (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) |
18 | 17 | ac6sg 10175 |
. . 3
⊢ (𝐵 ∈ V → (∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑧 ∈ (◡𝐹 “ {𝑦}) → ∃𝑔(𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})))) |
19 | 2, 16, 18 | sylc 65 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑔(𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) |
20 | | frn 6591 |
. . . . 5
⊢ (𝑔:𝐵⟶𝐴 → ran 𝑔 ⊆ 𝐴) |
21 | 20 | ad2antrl 724 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → ran 𝑔 ⊆ 𝐴) |
22 | | vex 3426 |
. . . . . 6
⊢ 𝑔 ∈ V |
23 | 22 | rnex 7733 |
. . . . 5
⊢ ran 𝑔 ∈ V |
24 | 23 | elpw 4534 |
. . . 4
⊢ (ran
𝑔 ∈ 𝒫 𝐴 ↔ ran 𝑔 ⊆ 𝐴) |
25 | 21, 24 | sylibr 233 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → ran 𝑔 ∈ 𝒫 𝐴) |
26 | | fof 6672 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
27 | 26 | ad2antlr 723 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → 𝐹:𝐴⟶𝐵) |
28 | 27, 21 | fssresd 6625 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → (𝐹 ↾ ran 𝑔):ran 𝑔⟶𝐵) |
29 | | ffn 6584 |
. . . . . 6
⊢ (𝑔:𝐵⟶𝐴 → 𝑔 Fn 𝐵) |
30 | 29 | ad2antrl 724 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → 𝑔 Fn 𝐵) |
31 | | dffn3 6597 |
. . . . 5
⊢ (𝑔 Fn 𝐵 ↔ 𝑔:𝐵⟶ran 𝑔) |
32 | 30, 31 | sylib 217 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → 𝑔:𝐵⟶ran 𝑔) |
33 | | fvres 6775 |
. . . . . . . 8
⊢ (𝑧 ∈ ran 𝑔 → ((𝐹 ↾ ran 𝑔)‘𝑧) = (𝐹‘𝑧)) |
34 | 33 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ((𝐹 ↾ ran 𝑔)‘𝑧) = (𝐹‘𝑧)) |
35 | 34 | fveq2d 6760 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = (𝑔‘(𝐹‘𝑧))) |
36 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) |
37 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑦 𝑔:𝐵⟶𝐴 |
38 | | nfra1 3142 |
. . . . . . . . . 10
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}) |
39 | 37, 38 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})) |
40 | 36, 39 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑦((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) |
41 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑧 ∈ ran 𝑔 |
42 | 40, 41 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑦(((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) |
43 | | simpr 484 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → (𝑔‘𝑦) = 𝑧) |
44 | 43 | fveq2d 6760 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → (𝐹‘(𝑔‘𝑦)) = (𝐹‘𝑧)) |
45 | 4 | ad5antlr 731 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → 𝐹 Fn 𝐴) |
46 | | simplrr 774 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})) |
47 | 46 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})) |
48 | | simplr 765 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → 𝑦 ∈ 𝐵) |
49 | | rspa 3130 |
. . . . . . . . . . . 12
⊢
((∀𝑦 ∈
𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}) ∧ 𝑦 ∈ 𝐵) → (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})) |
50 | 47, 48, 49 | syl2anc 583 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})) |
51 | | fniniseg 6919 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 → ((𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}) ↔ ((𝑔‘𝑦) ∈ 𝐴 ∧ (𝐹‘(𝑔‘𝑦)) = 𝑦))) |
52 | 51 | simplbda 499 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})) → (𝐹‘(𝑔‘𝑦)) = 𝑦) |
53 | 45, 50, 52 | syl2anc 583 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → (𝐹‘(𝑔‘𝑦)) = 𝑦) |
54 | 44, 53 | eqtr3d 2780 |
. . . . . . . . 9
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → (𝐹‘𝑧) = 𝑦) |
55 | 54 | fveq2d 6760 |
. . . . . . . 8
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → (𝑔‘(𝐹‘𝑧)) = (𝑔‘𝑦)) |
56 | 55, 43 | eqtrd 2778 |
. . . . . . 7
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦 ∈ 𝐵) ∧ (𝑔‘𝑦) = 𝑧) → (𝑔‘(𝐹‘𝑧)) = 𝑧) |
57 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝑔 Fn 𝐵 → (𝑧 ∈ ran 𝑔 ↔ ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = 𝑧)) |
58 | 57 | biimpa 476 |
. . . . . . . 8
⊢ ((𝑔 Fn 𝐵 ∧ 𝑧 ∈ ran 𝑔) → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = 𝑧) |
59 | 30, 58 | sylan 579 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = 𝑧) |
60 | 42, 56, 59 | r19.29af 3259 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘(𝐹‘𝑧)) = 𝑧) |
61 | 35, 60 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = 𝑧) |
62 | 61 | ralrimiva 3107 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → ∀𝑧 ∈ ran 𝑔(𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = 𝑧) |
63 | 32 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑦 ∈ 𝐵) → (𝑔‘𝑦) ∈ ran 𝑔) |
64 | | fvres 6775 |
. . . . . . . 8
⊢ ((𝑔‘𝑦) ∈ ran 𝑔 → ((𝐹 ↾ ran 𝑔)‘(𝑔‘𝑦)) = (𝐹‘(𝑔‘𝑦))) |
65 | 63, 64 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑦 ∈ 𝐵) → ((𝐹 ↾ ran 𝑔)‘(𝑔‘𝑦)) = (𝐹‘(𝑔‘𝑦))) |
66 | 4 | ad3antlr 727 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑦 ∈ 𝐵) → 𝐹 Fn 𝐴) |
67 | | simplrr 774 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑦 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})) |
68 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
69 | 67, 68, 49 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑦 ∈ 𝐵) → (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦})) |
70 | 66, 69, 52 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝑔‘𝑦)) = 𝑦) |
71 | 65, 70 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) ∧ 𝑦 ∈ 𝐵) → ((𝐹 ↾ ran 𝑔)‘(𝑔‘𝑦)) = 𝑦) |
72 | 71 | ex 412 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → (𝑦 ∈ 𝐵 → ((𝐹 ↾ ran 𝑔)‘(𝑔‘𝑦)) = 𝑦)) |
73 | 40, 72 | ralrimi 3139 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → ∀𝑦 ∈ 𝐵 ((𝐹 ↾ ran 𝑔)‘(𝑔‘𝑦)) = 𝑦) |
74 | 28, 32, 62, 73 | 2fvidf1od 7150 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → (𝐹 ↾ ran 𝑔):ran 𝑔–1-1-onto→𝐵) |
75 | | reseq2 5875 |
. . . . 5
⊢ (𝑥 = ran 𝑔 → (𝐹 ↾ 𝑥) = (𝐹 ↾ ran 𝑔)) |
76 | | id 22 |
. . . . 5
⊢ (𝑥 = ran 𝑔 → 𝑥 = ran 𝑔) |
77 | | eqidd 2739 |
. . . . 5
⊢ (𝑥 = ran 𝑔 → 𝐵 = 𝐵) |
78 | 75, 76, 77 | f1oeq123d 6694 |
. . . 4
⊢ (𝑥 = ran 𝑔 → ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵 ↔ (𝐹 ↾ ran 𝑔):ran 𝑔–1-1-onto→𝐵)) |
79 | 78 | rspcev 3552 |
. . 3
⊢ ((ran
𝑔 ∈ 𝒫 𝐴 ∧ (𝐹 ↾ ran 𝑔):ran 𝑔–1-1-onto→𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵) |
80 | 25, 74, 79 | syl2anc 583 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑔:𝐵⟶𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) ∈ (◡𝐹 “ {𝑦}))) → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵) |
81 | 19, 80 | exlimddv 1939 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐵) |