Proof of Theorem aceq0
Step | Hyp | Ref
| Expression |
1 | | aceq1 9804 |
. 2
⊢
(∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
2 | | equequ2 2030 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → (𝑢 = 𝑣 ↔ 𝑢 = 𝑥)) |
3 | 2 | bibi2d 342 |
. . . . . . . . 9
⊢ (𝑣 = 𝑥 → ((∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣) ↔ (∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑥))) |
4 | | elequ2 2123 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → (𝑤 ∈ 𝑡 ↔ 𝑤 ∈ 𝑥)) |
5 | 4 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → ((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ↔ (𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
6 | | elequ2 2123 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → (𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑥)) |
7 | | elequ1 2115 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → (𝑡 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) |
8 | 6, 7 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → ((𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦) ↔ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦))) |
9 | 5, 8 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑥 → (((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ ((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)))) |
10 | 9 | cbvexvw 2041 |
. . . . . . . . . 10
⊢
(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ ∃𝑥((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦))) |
11 | 10 | bibi1i 338 |
. . . . . . . . 9
⊢
((∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑥) ↔ (∃𝑥((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑢 = 𝑥)) |
12 | 3, 11 | bitrdi 286 |
. . . . . . . 8
⊢ (𝑣 = 𝑥 → ((∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣) ↔ (∃𝑥((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑢 = 𝑥))) |
13 | 12 | albidv 1924 |
. . . . . . 7
⊢ (𝑣 = 𝑥 → (∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣) ↔ ∀𝑢(∃𝑥((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑢 = 𝑥))) |
14 | | elequ1 2115 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → (𝑢 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
15 | 14 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → ((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ↔ (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
16 | | elequ1 2115 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → (𝑢 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
17 | 16 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → ((𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦))) |
18 | 15, 17 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → (((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)))) |
19 | 18 | exbidv 1925 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → (∃𝑥((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ ∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)))) |
20 | | equequ1 2029 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → (𝑢 = 𝑥 ↔ 𝑧 = 𝑥)) |
21 | 19, 20 | bibi12d 345 |
. . . . . . . 8
⊢ (𝑢 = 𝑧 → ((∃𝑥((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑢 = 𝑥) ↔ (∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
22 | 21 | cbvalvw 2040 |
. . . . . . 7
⊢
(∀𝑢(∃𝑥((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑢 = 𝑥) ↔ ∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥)) |
23 | 13, 22 | bitrdi 286 |
. . . . . 6
⊢ (𝑣 = 𝑥 → (∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣) ↔ ∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
24 | 23 | cbvexvw 2041 |
. . . . 5
⊢
(∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣) ↔ ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥)) |
25 | 24 | imbi2i 335 |
. . . 4
⊢ (((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) ↔ ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
26 | 25 | 2albii 1824 |
. . 3
⊢
(∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) ↔ ∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
27 | 26 | exbii 1851 |
. 2
⊢
(∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
28 | 1, 27 | bitr4i 277 |
1
⊢
(∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) |