MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq0 Structured version   Visualization version   GIF version

Theorem aceq0 10110
Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. The right-hand side is our original ax-ac 10451. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
aceq0 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡

Proof of Theorem aceq0
StepHypRef Expression
1 aceq1 10109 . 2 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2 equequ2 2021 . . . . . . . . . 10 (𝑣 = 𝑥 → (𝑢 = 𝑣𝑢 = 𝑥))
32bibi2d 342 . . . . . . . . 9 (𝑣 = 𝑥 → ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑥)))
4 elequ2 2113 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑤𝑡𝑤𝑥))
54anbi2d 628 . . . . . . . . . . . 12 (𝑡 = 𝑥 → ((𝑢𝑤𝑤𝑡) ↔ (𝑢𝑤𝑤𝑥)))
6 elequ2 2113 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑢𝑡𝑢𝑥))
7 elequ1 2105 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑡𝑦𝑥𝑦))
86, 7anbi12d 630 . . . . . . . . . . . 12 (𝑡 = 𝑥 → ((𝑢𝑡𝑡𝑦) ↔ (𝑢𝑥𝑥𝑦)))
95, 8anbi12d 630 . . . . . . . . . . 11 (𝑡 = 𝑥 → (((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ ((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦))))
109cbvexvw 2032 . . . . . . . . . 10 (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ ∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)))
1110bibi1i 338 . . . . . . . . 9 ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑥) ↔ (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥))
123, 11bitrdi 287 . . . . . . . 8 (𝑣 = 𝑥 → ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥)))
1312albidv 1915 . . . . . . 7 (𝑣 = 𝑥 → (∀𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∀𝑢(∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥)))
14 elequ1 2105 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢𝑤𝑧𝑤))
1514anbi1d 629 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢𝑤𝑤𝑥) ↔ (𝑧𝑤𝑤𝑥)))
16 elequ1 2105 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢𝑥𝑧𝑥))
1716anbi1d 629 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢𝑥𝑥𝑦) ↔ (𝑧𝑥𝑥𝑦)))
1815, 17anbi12d 630 . . . . . . . . . 10 (𝑢 = 𝑧 → (((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ ((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦))))
1918exbidv 1916 . . . . . . . . 9 (𝑢 = 𝑧 → (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ ∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦))))
20 equequ1 2020 . . . . . . . . 9 (𝑢 = 𝑧 → (𝑢 = 𝑥𝑧 = 𝑥))
2119, 20bibi12d 345 . . . . . . . 8 (𝑢 = 𝑧 → ((∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥) ↔ (∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2221cbvalvw 2031 . . . . . . 7 (∀𝑢(∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥) ↔ ∀𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥))
2313, 22bitrdi 287 . . . . . 6 (𝑣 = 𝑥 → (∀𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∀𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2423cbvexvw 2032 . . . . 5 (∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥))
2524imbi2i 336 . . . 4 (((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
26252albii 1814 . . 3 (∀𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ∀𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2726exbii 1842 . 2 (∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
281, 27bitr4i 278 1 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531  wex 1773  wral 3053  wrex 3062  ∃!wreu 3366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-nf 1778  df-mo 2526  df-eu 2555  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369
This theorem is referenced by:  dfac0  10125  ac2  10453
  Copyright terms: Public domain W3C validator