| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alneu | Structured version Visualization version GIF version | ||
| Description: If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017.) |
| Ref | Expression |
|---|---|
| alneu | ⊢ (∀𝑥𝜑 → ¬ ∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eunex 5390 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | |
| 2 | exnal 1827 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (∃!𝑥𝜑 → ¬ ∀𝑥𝜑) |
| 4 | 3 | con2i 139 | 1 ⊢ (∀𝑥𝜑 → ¬ ∃!𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-nul 5306 ax-pow 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: eu2ndop1stv 47137 |
| Copyright terms: Public domain | W3C validator |