Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > alneu | Structured version Visualization version GIF version |
Description: If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017.) |
Ref | Expression |
---|---|
alneu | ⊢ (∀𝑥𝜑 → ¬ ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eunex 5257 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | |
2 | exnal 1833 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
3 | 1, 2 | sylib 221 | . 2 ⊢ (∃!𝑥𝜑 → ¬ ∀𝑥𝜑) |
4 | 3 | con2i 141 | 1 ⊢ (∀𝑥𝜑 → ¬ ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1786 ∃!weu 2569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-12 2179 ax-nul 5174 ax-pow 5232 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-mo 2540 df-eu 2570 |
This theorem is referenced by: eu2ndop1stv 44150 |
Copyright terms: Public domain | W3C validator |