| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alneu | Structured version Visualization version GIF version | ||
| Description: If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017.) |
| Ref | Expression |
|---|---|
| alneu | ⊢ (∀𝑥𝜑 → ¬ ∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eunex 5370 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | |
| 2 | exnal 1826 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (∃!𝑥𝜑 → ¬ ∀𝑥𝜑) |
| 4 | 3 | con2i 139 | 1 ⊢ (∀𝑥𝜑 → ¬ ∃!𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1778 ∃!weu 2566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-nul 5286 ax-pow 5345 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-mo 2538 df-eu 2567 |
| This theorem is referenced by: eu2ndop1stv 47095 |
| Copyright terms: Public domain | W3C validator |