![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eu2ndop1stv | Structured version Visualization version GIF version |
Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
Ref | Expression |
---|---|
eu2ndop1stv | ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2624 | . 2 ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝑉) | |
2 | nfeu1 2637 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 | |
3 | nfcv 2951 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
4 | 3 | nfel1 2965 | . . . 4 ⊢ Ⅎ𝑦 𝐴 ∈ V |
5 | 2, 4 | nfim 1882 | . . 3 ⊢ Ⅎ𝑦(∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
6 | opprc1 4740 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝑦〉 = ∅) | |
7 | 6 | eleq1d 2869 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ∅ ∈ 𝑉)) |
8 | ax-5 1892 | . . . . . . . . 9 ⊢ (∅ ∈ 𝑉 → ∀𝑦∅ ∈ 𝑉) | |
9 | alneu 42861 | . . . . . . . . 9 ⊢ (∀𝑦∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉) |
11 | 7, 10 | syl6bi 254 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑦〉 ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)) |
12 | 11 | impcom 408 | . . . . . 6 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦∅ ∈ 𝑉) |
13 | 7 | eubidv 2634 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ∃!𝑦∅ ∈ 𝑉)) |
14 | 13 | notbid 319 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉)) |
15 | 14 | adantl 482 | . . . . . 6 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → (¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉)) |
16 | 12, 15 | mpbird 258 | . . . . 5 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉) |
17 | 16 | ex 413 | . . . 4 ⊢ (〈𝐴, 𝑦〉 ∈ 𝑉 → (¬ 𝐴 ∈ V → ¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉)) |
18 | 17 | con4d 115 | . . 3 ⊢ (〈𝐴, 𝑦〉 ∈ 𝑉 → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V)) |
19 | 5, 18 | exlimi 2184 | . 2 ⊢ (∃𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V)) |
20 | 1, 19 | mpcom 38 | 1 ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1523 ∃wex 1765 ∈ wcel 2083 ∃!weu 2613 Vcvv 3440 ∅c0 4217 〈cop 4484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 ax-nul 5108 ax-pow 5164 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-dif 3868 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-op 4485 |
This theorem is referenced by: afveu 42890 tz6.12-afv 42910 tz6.12-afv2 42977 |
Copyright terms: Public domain | W3C validator |