![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eu2ndop1stv | Structured version Visualization version GIF version |
Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
Ref | Expression |
---|---|
eu2ndop1stv | ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2580 | . 2 ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝑉) | |
2 | nfeu1 2591 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 | |
3 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
4 | 3 | nfel1 2925 | . . . 4 ⊢ Ⅎ𝑦 𝐴 ∈ V |
5 | 2, 4 | nfim 1895 | . . 3 ⊢ Ⅎ𝑦(∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
6 | opprc1 4921 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝑦〉 = ∅) | |
7 | 6 | eleq1d 2829 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ∅ ∈ 𝑉)) |
8 | ax-5 1909 | . . . . . . . . 9 ⊢ (∅ ∈ 𝑉 → ∀𝑦∅ ∈ 𝑉) | |
9 | alneu 47039 | . . . . . . . . 9 ⊢ (∀𝑦∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉) |
11 | 7, 10 | biimtrdi 253 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑦〉 ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)) |
12 | 11 | impcom 407 | . . . . . 6 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦∅ ∈ 𝑉) |
13 | 7 | eubidv 2589 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ∃!𝑦∅ ∈ 𝑉)) |
14 | 13 | notbid 318 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉)) |
15 | 14 | adantl 481 | . . . . . 6 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → (¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉)) |
16 | 12, 15 | mpbird 257 | . . . . 5 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉) |
17 | 16 | ex 412 | . . . 4 ⊢ (〈𝐴, 𝑦〉 ∈ 𝑉 → (¬ 𝐴 ∈ V → ¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉)) |
18 | 17 | con4d 115 | . . 3 ⊢ (〈𝐴, 𝑦〉 ∈ 𝑉 → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V)) |
19 | 5, 18 | exlimi 2218 | . 2 ⊢ (∃𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V)) |
20 | 1, 19 | mpcom 38 | 1 ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 ∈ wcel 2108 ∃!weu 2571 Vcvv 3488 ∅c0 4352 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-dif 3979 df-ss 3993 df-nul 4353 df-if 4549 df-op 4655 |
This theorem is referenced by: afveu 47068 tz6.12-afv 47088 tz6.12-afv2 47155 |
Copyright terms: Public domain | W3C validator |