Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eu2ndop1stv Structured version   Visualization version   GIF version

Theorem eu2ndop1stv 44289
Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
eu2ndop1stv (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉

Proof of Theorem eu2ndop1stv
StepHypRef Expression
1 euex 2576 . 2 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝑉)
2 nfeu1 2587 . . . 4 𝑦∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉
3 nfcv 2904 . . . . 5 𝑦𝐴
43nfel1 2920 . . . 4 𝑦 𝐴 ∈ V
52, 4nfim 1904 . . 3 𝑦(∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
6 opprc1 4808 . . . . . . . . 9 𝐴 ∈ V → ⟨𝐴, 𝑦⟩ = ∅)
76eleq1d 2822 . . . . . . . 8 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝑉 ↔ ∅ ∈ 𝑉))
8 ax-5 1918 . . . . . . . . 9 (∅ ∈ 𝑉 → ∀𝑦∅ ∈ 𝑉)
9 alneu 44288 . . . . . . . . 9 (∀𝑦∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)
108, 9syl 17 . . . . . . . 8 (∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)
117, 10syl6bi 256 . . . . . . 7 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉))
1211impcom 411 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦∅ ∈ 𝑉)
137eubidv 2585 . . . . . . . 8 𝐴 ∈ V → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ∃!𝑦∅ ∈ 𝑉))
1413notbid 321 . . . . . . 7 𝐴 ∈ V → (¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉))
1514adantl 485 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → (¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉))
1612, 15mpbird 260 . . . . 5 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉)
1716ex 416 . . . 4 (⟨𝐴, 𝑦⟩ ∈ 𝑉 → (¬ 𝐴 ∈ V → ¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉))
1817con4d 115 . . 3 (⟨𝐴, 𝑦⟩ ∈ 𝑉 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V))
195, 18exlimi 2215 . 2 (∃𝑦𝐴, 𝑦⟩ ∈ 𝑉 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V))
201, 19mpcom 38 1 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541  wex 1787  wcel 2110  ∃!weu 2567  Vcvv 3408  c0 4237  cop 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199  ax-pow 5258
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-v 3410  df-dif 3869  df-nul 4238  df-if 4440  df-op 4548
This theorem is referenced by:  afveu  44317  tz6.12-afv  44337  tz6.12-afv2  44404
  Copyright terms: Public domain W3C validator