Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eu2ndop1stv Structured version   Visualization version   GIF version

Theorem eu2ndop1stv 47040
Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
eu2ndop1stv (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉

Proof of Theorem eu2ndop1stv
StepHypRef Expression
1 euex 2580 . 2 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝑉)
2 nfeu1 2591 . . . 4 𝑦∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉
3 nfcv 2908 . . . . 5 𝑦𝐴
43nfel1 2925 . . . 4 𝑦 𝐴 ∈ V
52, 4nfim 1895 . . 3 𝑦(∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
6 opprc1 4921 . . . . . . . . 9 𝐴 ∈ V → ⟨𝐴, 𝑦⟩ = ∅)
76eleq1d 2829 . . . . . . . 8 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝑉 ↔ ∅ ∈ 𝑉))
8 ax-5 1909 . . . . . . . . 9 (∅ ∈ 𝑉 → ∀𝑦∅ ∈ 𝑉)
9 alneu 47039 . . . . . . . . 9 (∀𝑦∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)
108, 9syl 17 . . . . . . . 8 (∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)
117, 10biimtrdi 253 . . . . . . 7 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉))
1211impcom 407 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦∅ ∈ 𝑉)
137eubidv 2589 . . . . . . . 8 𝐴 ∈ V → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ∃!𝑦∅ ∈ 𝑉))
1413notbid 318 . . . . . . 7 𝐴 ∈ V → (¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉))
1514adantl 481 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → (¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉))
1612, 15mpbird 257 . . . . 5 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉)
1716ex 412 . . . 4 (⟨𝐴, 𝑦⟩ ∈ 𝑉 → (¬ 𝐴 ∈ V → ¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉))
1817con4d 115 . . 3 (⟨𝐴, 𝑦⟩ ∈ 𝑉 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V))
195, 18exlimi 2218 . 2 (∃𝑦𝐴, 𝑦⟩ ∈ 𝑉 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V))
201, 19mpcom 38 1 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535  wex 1777  wcel 2108  ∃!weu 2571  Vcvv 3488  c0 4352  cop 4654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-nul 5324  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-dif 3979  df-ss 3993  df-nul 4353  df-if 4549  df-op 4655
This theorem is referenced by:  afveu  47068  tz6.12-afv  47088  tz6.12-afv2  47155
  Copyright terms: Public domain W3C validator