Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eu2ndop1stv | Structured version Visualization version GIF version |
Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
Ref | Expression |
---|---|
eu2ndop1stv | ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2577 | . 2 ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝑉) | |
2 | nfeu1 2588 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 | |
3 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
4 | 3 | nfel1 2923 | . . . 4 ⊢ Ⅎ𝑦 𝐴 ∈ V |
5 | 2, 4 | nfim 1899 | . . 3 ⊢ Ⅎ𝑦(∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
6 | opprc1 4828 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝑦〉 = ∅) | |
7 | 6 | eleq1d 2823 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ∅ ∈ 𝑉)) |
8 | ax-5 1913 | . . . . . . . . 9 ⊢ (∅ ∈ 𝑉 → ∀𝑦∅ ∈ 𝑉) | |
9 | alneu 44616 | . . . . . . . . 9 ⊢ (∀𝑦∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉) |
11 | 7, 10 | syl6bi 252 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑦〉 ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)) |
12 | 11 | impcom 408 | . . . . . 6 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦∅ ∈ 𝑉) |
13 | 7 | eubidv 2586 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ∃!𝑦∅ ∈ 𝑉)) |
14 | 13 | notbid 318 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉)) |
15 | 14 | adantl 482 | . . . . . 6 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → (¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉)) |
16 | 12, 15 | mpbird 256 | . . . . 5 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉) |
17 | 16 | ex 413 | . . . 4 ⊢ (〈𝐴, 𝑦〉 ∈ 𝑉 → (¬ 𝐴 ∈ V → ¬ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉)) |
18 | 17 | con4d 115 | . . 3 ⊢ (〈𝐴, 𝑦〉 ∈ 𝑉 → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V)) |
19 | 5, 18 | exlimi 2210 | . 2 ⊢ (∃𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V)) |
20 | 1, 19 | mpcom 38 | 1 ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 Vcvv 3432 ∅c0 4256 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 df-dif 3890 df-nul 4257 df-if 4460 df-op 4568 |
This theorem is referenced by: afveu 44645 tz6.12-afv 44665 tz6.12-afv2 44732 |
Copyright terms: Public domain | W3C validator |