Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eu2ndop1stv Structured version   Visualization version   GIF version

Theorem eu2ndop1stv 41873
Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
eu2ndop1stv (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉

Proof of Theorem eu2ndop1stv
StepHypRef Expression
1 euex 2591 . 2 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝑉)
2 nfeu1 2590 . . . 4 𝑦∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉
3 nfcv 2907 . . . . 5 𝑦𝐴
43nfel1 2922 . . . 4 𝑦 𝐴 ∈ V
52, 4nfim 1995 . . 3 𝑦(∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
6 opprc1 4583 . . . . . . . . 9 𝐴 ∈ V → ⟨𝐴, 𝑦⟩ = ∅)
76eleq1d 2829 . . . . . . . 8 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝑉 ↔ ∅ ∈ 𝑉))
8 ax-5 2005 . . . . . . . . 9 (∅ ∈ 𝑉 → ∀𝑦∅ ∈ 𝑉)
9 alneu 41872 . . . . . . . . 9 (∀𝑦∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)
108, 9syl 17 . . . . . . . 8 (∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)
117, 10syl6bi 244 . . . . . . 7 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉))
1211impcom 396 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦∅ ∈ 𝑉)
137eubidv 2585 . . . . . . . 8 𝐴 ∈ V → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ∃!𝑦∅ ∈ 𝑉))
1413notbid 309 . . . . . . 7 𝐴 ∈ V → (¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉))
1514adantl 473 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → (¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉))
1612, 15mpbird 248 . . . . 5 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉)
1716ex 401 . . . 4 (⟨𝐴, 𝑦⟩ ∈ 𝑉 → (¬ 𝐴 ∈ V → ¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉))
1817con4d 115 . . 3 (⟨𝐴, 𝑦⟩ ∈ 𝑉 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V))
195, 18exlimi 2250 . 2 (∃𝑦𝐴, 𝑦⟩ ∈ 𝑉 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V))
201, 19mpcom 38 1 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wal 1650  wex 1874  wcel 2155  ∃!weu 2581  Vcvv 3350  c0 4079  cop 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-nul 4949  ax-pow 5001
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-v 3352  df-dif 3735  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-op 4341
This theorem is referenced by:  afveu  41901  tz6.12-afv  41921  tz6.12-afv2  41988
  Copyright terms: Public domain W3C validator