MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbc1v Structured version   Visualization version   GIF version

Theorem nfsbc1v 3756
Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
nfsbc1v 𝑥[𝐴 / 𝑥]𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem nfsbc1v
StepHypRef Expression
1 nfcv 2894 . 2 𝑥𝐴
21nfsbc1 3755 1 𝑥[𝐴 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1784  [wsbc 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-sbc 3737
This theorem is referenced by:  elrabsf  3782  cbvralcsf  3887  reusngf  4624  rexreusng  4629  reuprg0  4652  rmosn  4669  rabsnifsb  4672  euotd  5451  reuop  6240  frpoinsg  6290  elfvmptrab1w  6956  elfvmptrab1  6957  ralrnmptw  7027  ralrnmpt  7029  oprabv  7406  elovmporab  7592  elovmporab1w  7593  elovmporab1  7594  ovmpt3rabdm  7605  elovmpt3rab1  7606  tfisg  7784  tfindes  7793  findes  7830  dfopab2  7984  dfoprab3s  7985  ralxpes  8066  ralxp3es  8069  frpoins3xpg  8070  frpoins3xp3g  8071  mpoxopoveq  8149  findcard2  9074  ac6sfi  9168  indexfi  9244  setinds  9639  frinsg  9644  nn0ind-raph  12573  uzind4s  12806  fzrevral  13512  rabssnn0fi  13893  prmind2  16596  elmptrab  23742  isfildlem  23772  2sqreulem4  27392  gropd  29009  grstructd  29010  rspc2daf  32445  opreu2reuALT  32456  bnj919  34779  bnj1468  34858  bnj110  34870  bnj607  34928  bnj873  34936  bnj849  34937  bnj1388  35045  bnj1489  35068  dfon2lem1  35825  rdgssun  37422  indexa  37783  indexdom  37784  sdclem2  37792  sdclem1  37793  fdc1  37796  alrimii  38169  riotasv2s  39067  sbccomieg  42896  rexrabdioph  42897  rexfrabdioph  42898  aomclem6  43162  pm14.24  44535  or2expropbilem2  47143  or2expropbi  47144  ich2exprop  47581  ichnreuop  47582  ichreuopeq  47583  prproropreud  47619  reupr  47632  reuopreuprim  47636
  Copyright terms: Public domain W3C validator