| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbc1v | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3789 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-sbc 3771 |
| This theorem is referenced by: elrabsf 3816 cbvralcsf 3921 reusngf 4655 rexreusng 4660 reuprg0 4683 rmosn 4700 rabsnifsb 4703 euotd 5493 reuop 6287 frpoinsg 6337 wfisgOLD 6348 elfvmptrab1w 7018 elfvmptrab1 7019 ralrnmptw 7089 ralrnmpt 7091 oprabv 7472 elovmporab 7658 elovmporab1w 7659 elovmporab1 7660 ovmpt3rabdm 7671 elovmpt3rab1 7672 tfisg 7854 tfindes 7863 findes 7901 dfopab2 8056 dfoprab3s 8057 ralxpes 8140 ralxp3es 8143 frpoins3xpg 8144 frpoins3xp3g 8145 mpoxopoveq 8223 findcard2 9183 ac6sfi 9297 indexfi 9377 frinsg 9770 nn0ind-raph 12698 uzind4s 12929 fzrevral 13634 rabssnn0fi 14009 prmind2 16709 elmptrab 23770 isfildlem 23800 2sqreulem4 27422 gropd 29015 grstructd 29016 rspc2daf 32452 opreu2reuALT 32463 bnj919 34803 bnj1468 34882 bnj110 34894 bnj607 34952 bnj873 34960 bnj849 34961 bnj1388 35069 bnj1489 35092 setinds 35801 dfon2lem1 35806 rdgssun 37401 indexa 37762 indexdom 37763 sdclem2 37771 sdclem1 37772 fdc1 37775 alrimii 38148 riotasv2s 38981 sbccomieg 42791 rexrabdioph 42792 rexfrabdioph 42793 aomclem6 43058 pm14.24 44431 or2expropbilem2 47042 or2expropbi 47043 ich2exprop 47465 ichnreuop 47466 ichreuopeq 47467 prproropreud 47503 reupr 47516 reuopreuprim 47520 |
| Copyright terms: Public domain | W3C validator |