Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsbc1v | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfsbc1 3730 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1787 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-sbc 3712 |
This theorem is referenced by: elrabsf 3759 cbvralcsf 3873 reusngf 4605 rexreusng 4612 reuprg0 4635 rmosn 4652 rabsnifsb 4655 euotd 5421 reuop 6185 frpoinsg 6231 wfisgOLD 6242 elfvmptrab1w 6883 elfvmptrab1 6884 ralrnmptw 6952 ralrnmpt 6954 oprabv 7313 elovmporab 7493 elovmporab1w 7494 elovmporab1 7495 ovmpt3rabdm 7506 elovmpt3rab1 7507 tfindes 7684 findes 7723 dfopab2 7865 dfoprab3s 7866 mpoxopoveq 8006 findcard2 8909 findcard2OLD 8986 ac6sfi 8988 indexfi 9057 frinsg 9440 nn0ind-raph 12350 uzind4s 12577 fzrevral 13270 rabssnn0fi 13634 prmind2 16318 elmptrab 22886 isfildlem 22916 2sqreulem4 26507 gropd 27304 grstructd 27305 rspc2daf 30717 opreu2reuALT 30726 bnj919 32647 bnj1468 32726 bnj110 32738 bnj607 32796 bnj873 32804 bnj849 32805 bnj1388 32913 bnj1489 32936 ralxpes 33581 ralxp3es 33591 setinds 33660 dfon2lem1 33665 tfisg 33692 frpoins3xpg 33714 frpoins3xp3g 33715 rdgssun 35476 indexa 35818 indexdom 35819 sdclem2 35827 sdclem1 35828 fdc1 35831 alrimii 36204 riotasv2s 36899 sbccomieg 40531 rexrabdioph 40532 rexfrabdioph 40533 aomclem6 40800 pm14.24 41939 or2expropbilem2 44414 or2expropbi 44415 ich2exprop 44811 ichnreuop 44812 ichreuopeq 44813 prproropreud 44849 reupr 44862 reuopreuprim 44866 |
Copyright terms: Public domain | W3C validator |