| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbc1v | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3791 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1782 [wsbc 3772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-sbc 3773 |
| This theorem is referenced by: elrabsf 3818 cbvralcsf 3923 reusngf 4656 rexreusng 4661 reuprg0 4684 rmosn 4701 rabsnifsb 4704 euotd 5500 reuop 6295 frpoinsg 6345 wfisgOLD 6356 elfvmptrab1w 7024 elfvmptrab1 7025 ralrnmptw 7095 ralrnmpt 7097 oprabv 7476 elovmporab 7662 elovmporab1w 7663 elovmporab1 7664 ovmpt3rabdm 7675 elovmpt3rab1 7676 tfisg 7858 tfindes 7867 findes 7905 dfopab2 8060 dfoprab3s 8061 ralxpes 8144 ralxp3es 8147 frpoins3xpg 8148 frpoins3xp3g 8149 mpoxopoveq 8227 findcard2 9187 ac6sfi 9303 indexfi 9383 frinsg 9774 nn0ind-raph 12702 uzind4s 12933 fzrevral 13635 rabssnn0fi 14010 prmind2 16705 elmptrab 23800 isfildlem 23830 2sqreulem4 27453 gropd 28995 grstructd 28996 rspc2daf 32432 opreu2reuALT 32443 bnj919 34722 bnj1468 34801 bnj110 34813 bnj607 34871 bnj873 34879 bnj849 34880 bnj1388 34988 bnj1489 35011 setinds 35720 dfon2lem1 35725 rdgssun 37320 indexa 37681 indexdom 37682 sdclem2 37690 sdclem1 37691 fdc1 37694 alrimii 38067 riotasv2s 38900 sbccomieg 42749 rexrabdioph 42750 rexfrabdioph 42751 aomclem6 43016 pm14.24 44396 or2expropbilem2 46991 or2expropbi 46992 ich2exprop 47404 ichnreuop 47405 ichreuopeq 47406 prproropreud 47442 reupr 47455 reuopreuprim 47459 |
| Copyright terms: Public domain | W3C validator |