| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbc1v | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3774 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 [wsbc 3755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-sbc 3756 |
| This theorem is referenced by: elrabsf 3801 cbvralcsf 3906 reusngf 4640 rexreusng 4645 reuprg0 4668 rmosn 4685 rabsnifsb 4688 euotd 5475 reuop 6268 frpoinsg 6318 elfvmptrab1w 6997 elfvmptrab1 6998 ralrnmptw 7068 ralrnmpt 7070 oprabv 7451 elovmporab 7637 elovmporab1w 7638 elovmporab1 7639 ovmpt3rabdm 7650 elovmpt3rab1 7651 tfisg 7832 tfindes 7841 findes 7878 dfopab2 8033 dfoprab3s 8034 ralxpes 8117 ralxp3es 8120 frpoins3xpg 8121 frpoins3xp3g 8122 mpoxopoveq 8200 findcard2 9133 ac6sfi 9237 indexfi 9317 frinsg 9710 nn0ind-raph 12640 uzind4s 12873 fzrevral 13579 rabssnn0fi 13957 prmind2 16661 elmptrab 23720 isfildlem 23750 2sqreulem4 27371 gropd 28964 grstructd 28965 rspc2daf 32401 opreu2reuALT 32412 bnj919 34763 bnj1468 34842 bnj110 34854 bnj607 34912 bnj873 34920 bnj849 34921 bnj1388 35029 bnj1489 35052 setinds 35761 dfon2lem1 35766 rdgssun 37361 indexa 37722 indexdom 37723 sdclem2 37731 sdclem1 37732 fdc1 37735 alrimii 38108 riotasv2s 38946 sbccomieg 42774 rexrabdioph 42775 rexfrabdioph 42776 aomclem6 43041 pm14.24 44414 or2expropbilem2 47024 or2expropbi 47025 ich2exprop 47462 ichnreuop 47463 ichreuopeq 47464 prproropreud 47500 reupr 47513 reuopreuprim 47517 |
| Copyright terms: Public domain | W3C validator |