| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbc1v | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3755 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-sbc 3737 |
| This theorem is referenced by: elrabsf 3782 cbvralcsf 3887 reusngf 4624 rexreusng 4629 reuprg0 4652 rmosn 4669 rabsnifsb 4672 euotd 5451 reuop 6240 frpoinsg 6290 elfvmptrab1w 6956 elfvmptrab1 6957 ralrnmptw 7027 ralrnmpt 7029 oprabv 7406 elovmporab 7592 elovmporab1w 7593 elovmporab1 7594 ovmpt3rabdm 7605 elovmpt3rab1 7606 tfisg 7784 tfindes 7793 findes 7830 dfopab2 7984 dfoprab3s 7985 ralxpes 8066 ralxp3es 8069 frpoins3xpg 8070 frpoins3xp3g 8071 mpoxopoveq 8149 findcard2 9074 ac6sfi 9168 indexfi 9244 setinds 9639 frinsg 9644 nn0ind-raph 12573 uzind4s 12806 fzrevral 13512 rabssnn0fi 13893 prmind2 16596 elmptrab 23742 isfildlem 23772 2sqreulem4 27392 gropd 29009 grstructd 29010 rspc2daf 32445 opreu2reuALT 32456 bnj919 34779 bnj1468 34858 bnj110 34870 bnj607 34928 bnj873 34936 bnj849 34937 bnj1388 35045 bnj1489 35068 dfon2lem1 35825 rdgssun 37422 indexa 37783 indexdom 37784 sdclem2 37792 sdclem1 37793 fdc1 37796 alrimii 38169 riotasv2s 39067 sbccomieg 42896 rexrabdioph 42897 rexfrabdioph 42898 aomclem6 43162 pm14.24 44535 or2expropbilem2 47143 or2expropbi 47144 ich2exprop 47581 ichnreuop 47582 ichreuopeq 47583 prproropreud 47619 reupr 47632 reuopreuprim 47636 |
| Copyright terms: Public domain | W3C validator |