| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbc1v | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3761 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 [wsbc 3742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-sbc 3743 |
| This theorem is referenced by: elrabsf 3788 cbvralcsf 3893 reusngf 4626 rexreusng 4631 reuprg0 4654 rmosn 4671 rabsnifsb 4674 euotd 5456 reuop 6241 frpoinsg 6291 elfvmptrab1w 6957 elfvmptrab1 6958 ralrnmptw 7028 ralrnmpt 7030 oprabv 7409 elovmporab 7595 elovmporab1w 7596 elovmporab1 7597 ovmpt3rabdm 7608 elovmpt3rab1 7609 tfisg 7787 tfindes 7796 findes 7833 dfopab2 7987 dfoprab3s 7988 ralxpes 8069 ralxp3es 8072 frpoins3xpg 8073 frpoins3xp3g 8074 mpoxopoveq 8152 findcard2 9078 ac6sfi 9173 indexfi 9250 frinsg 9647 nn0ind-raph 12576 uzind4s 12809 fzrevral 13515 rabssnn0fi 13893 prmind2 16596 elmptrab 23712 isfildlem 23742 2sqreulem4 27363 gropd 28976 grstructd 28977 rspc2daf 32410 opreu2reuALT 32421 bnj919 34740 bnj1468 34819 bnj110 34831 bnj607 34889 bnj873 34897 bnj849 34898 bnj1388 35006 bnj1489 35029 setinds 35762 dfon2lem1 35767 rdgssun 37362 indexa 37723 indexdom 37724 sdclem2 37732 sdclem1 37733 fdc1 37736 alrimii 38109 riotasv2s 38947 sbccomieg 42776 rexrabdioph 42777 rexfrabdioph 42778 aomclem6 43042 pm14.24 44415 or2expropbilem2 47027 or2expropbi 47028 ich2exprop 47465 ichnreuop 47466 ichreuopeq 47467 prproropreud 47503 reupr 47516 reuopreuprim 47520 |
| Copyright terms: Public domain | W3C validator |