| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq2a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12r 2252. (Contributed by NM, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| sbceq2a | ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1a 3776 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 2 | 1 | eqcoms 2743 | . 2 ⊢ (𝐴 = 𝑥 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sbc 3766 |
| This theorem is referenced by: ralrnmptw 7084 tfindes 7858 rabssnn0fi 14004 indexa 37757 fdc 37769 fdc1 37770 alrimii 38143 tratrbVD 44885 |
| Copyright terms: Public domain | W3C validator |