![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq2a | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12r 2250. (Contributed by NM, 4-Jan-2017.) |
Ref | Expression |
---|---|
sbceq2a | ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 3802 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | eqcoms 2743 | . 2 ⊢ (𝐴 = 𝑥 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
3 | 2 | bicomd 223 | 1 ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: ralrnmptw 7114 tfindes 7884 rabssnn0fi 14024 indexa 37720 fdc 37732 fdc1 37733 alrimii 38106 tratrbVD 44859 |
Copyright terms: Public domain | W3C validator |