![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq2a | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12r 2181. (Contributed by NM, 4-Jan-2017.) |
Ref | Expression |
---|---|
sbceq2a | ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 3687 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | eqcoms 2781 | . 2 ⊢ (𝐴 = 𝑥 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
3 | 2 | bicomd 215 | 1 ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1508 [wsbc 3676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1744 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-sbc 3677 |
This theorem is referenced by: tfindes 7392 rabssnn0fi 13168 indexa 34483 fdc 34495 fdc1 34496 alrimii 34874 tratrbVD 40648 |
Copyright terms: Public domain | W3C validator |