MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq2a Structured version   Visualization version   GIF version

Theorem sbceq2a 3765
Description: Equality theorem for class substitution. Class version of sbequ12r 2253. (Contributed by NM, 4-Jan-2017.)
Assertion
Ref Expression
sbceq2a (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbceq2a
StepHypRef Expression
1 sbceq1a 3764 . . 3 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21eqcoms 2737 . 2 (𝐴 = 𝑥 → (𝜑[𝐴 / 𝑥]𝜑))
32bicomd 223 1 (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  [wsbc 3753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3754
This theorem is referenced by:  ralrnmptw  7066  tfindes  7839  rabssnn0fi  13951  indexa  37727  fdc  37739  fdc1  37740  alrimii  38113  tratrbVD  44850
  Copyright terms: Public domain W3C validator