Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopex Structured version   Visualization version   GIF version

Theorem altopex 35936
Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopex 𝐴, 𝐵⟫ ∈ V

Proof of Theorem altopex
StepHypRef Expression
1 df-altop 35934 . 2 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
2 prex 5417 . 2 {{𝐴}, {𝐴, {𝐵}}} ∈ V
31, 2eqeltri 2829 1 𝐴, 𝐵⟫ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3463  {csn 4606  {cpr 4608  caltop 35932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-pr 4609  df-altop 35934
This theorem is referenced by:  elaltxp  35951
  Copyright terms: Public domain W3C validator