Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopex Structured version   Visualization version   GIF version

Theorem altopex 35236
Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopex 𝐴, 𝐵⟫ ∈ V

Proof of Theorem altopex
StepHypRef Expression
1 df-altop 35234 . 2 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
2 prex 5431 . 2 {{𝐴}, {𝐴, {𝐵}}} ∈ V
31, 2eqeltri 2827 1 𝐴, 𝐵⟫ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  Vcvv 3472  {csn 4627  {cpr 4629  caltop 35232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-dif 3950  df-un 3952  df-nul 4322  df-sn 4628  df-pr 4630  df-altop 35234
This theorem is referenced by:  elaltxp  35251
  Copyright terms: Public domain W3C validator