Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopex | Structured version Visualization version GIF version |
Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
Ref | Expression |
---|---|
altopex | ⊢ ⟪𝐴, 𝐵⟫ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-altop 34256 | . 2 ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | |
2 | prex 5359 | . 2 ⊢ {{𝐴}, {𝐴, {𝐵}}} ∈ V | |
3 | 1, 2 | eqeltri 2837 | 1 ⊢ ⟪𝐴, 𝐵⟫ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3431 {csn 4567 {cpr 4569 ⟪caltop 34254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-sn 4568 df-pr 4570 df-altop 34256 |
This theorem is referenced by: elaltxp 34273 |
Copyright terms: Public domain | W3C validator |