| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altopex | Structured version Visualization version GIF version | ||
| Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
| Ref | Expression |
|---|---|
| altopex | ⊢ ⟪𝐴, 𝐵⟫ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-altop 35919 | . 2 ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | |
| 2 | prex 5387 | . 2 ⊢ {{𝐴}, {𝐴, {𝐵}}} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ ⟪𝐴, 𝐵⟫ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 {csn 4585 {cpr 4587 ⟪caltop 35917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-sn 4586 df-pr 4588 df-altop 35919 |
| This theorem is referenced by: elaltxp 35936 |
| Copyright terms: Public domain | W3C validator |