| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altopex | Structured version Visualization version GIF version | ||
| Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
| Ref | Expression |
|---|---|
| altopex | ⊢ ⟪𝐴, 𝐵⟫ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-altop 36000 | . 2 ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | |
| 2 | prex 5373 | . 2 ⊢ {{𝐴}, {𝐴, {𝐵}}} ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | 1 ⊢ ⟪𝐴, 𝐵⟫ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 {csn 4573 {cpr 4575 ⟪caltop 35998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-pr 4576 df-altop 36000 |
| This theorem is referenced by: elaltxp 36017 |
| Copyright terms: Public domain | W3C validator |