Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopex Structured version   Visualization version   GIF version

Theorem altopex 35916
Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopex 𝐴, 𝐵⟫ ∈ V

Proof of Theorem altopex
StepHypRef Expression
1 df-altop 35914 . 2 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
2 prex 5452 . 2 {{𝐴}, {𝐴, {𝐵}}} ∈ V
31, 2eqeltri 2840 1 𝐴, 𝐵⟫ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  {csn 4648  {cpr 4650  caltop 35912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651  df-altop 35914
This theorem is referenced by:  elaltxp  35931
  Copyright terms: Public domain W3C validator