Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopex Structured version   Visualization version   GIF version

Theorem altopex 34262
Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopex 𝐴, 𝐵⟫ ∈ V

Proof of Theorem altopex
StepHypRef Expression
1 df-altop 34260 . 2 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
2 prex 5355 . 2 {{𝐴}, {𝐴, {𝐵}}} ∈ V
31, 2eqeltri 2835 1 𝐴, 𝐵⟫ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  {csn 4561  {cpr 4563  caltop 34258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564  df-altop 34260
This theorem is referenced by:  elaltxp  34277
  Copyright terms: Public domain W3C validator