Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopex Structured version   Visualization version   GIF version

Theorem altopex 36002
Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopex 𝐴, 𝐵⟫ ∈ V

Proof of Theorem altopex
StepHypRef Expression
1 df-altop 36000 . 2 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
2 prex 5373 . 2 {{𝐴}, {𝐴, {𝐵}}} ∈ V
31, 2eqeltri 2827 1 𝐴, 𝐵⟫ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  {csn 4573  {cpr 4575  caltop 35998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-nul 4281  df-sn 4574  df-pr 4576  df-altop 36000
This theorem is referenced by:  elaltxp  36017
  Copyright terms: Public domain W3C validator