Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthsn Structured version   Visualization version   GIF version

Theorem altopthsn 35956
Description: Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
altopthsn (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}))

Proof of Theorem altopthsn
StepHypRef Expression
1 df-altop 35953 . . 3 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
2 df-altop 35953 . . 3 𝐶, 𝐷⟫ = {{𝐶}, {𝐶, {𝐷}}}
31, 2eqeq12i 2748 . 2 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ {{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}})
4 snex 5394 . . . . . 6 {𝐴} ∈ V
5 prex 5395 . . . . . 6 {𝐴, {𝐵}} ∈ V
6 snex 5394 . . . . . 6 {𝐶} ∈ V
7 prex 5395 . . . . . 6 {𝐶, {𝐷}} ∈ V
84, 5, 6, 7preq12b 4817 . . . . 5 ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} ↔ (({𝐴} = {𝐶} ∧ {𝐴, {𝐵}} = {𝐶, {𝐷}}) ∨ ({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶})))
9 simpl 482 . . . . . 6 (({𝐴} = {𝐶} ∧ {𝐴, {𝐵}} = {𝐶, {𝐷}}) → {𝐴} = {𝐶})
10 snsspr1 4781 . . . . . . . . 9 {𝐴} ⊆ {𝐴, {𝐵}}
11 sseq2 3976 . . . . . . . . 9 ({𝐴, {𝐵}} = {𝐶} → ({𝐴} ⊆ {𝐴, {𝐵}} ↔ {𝐴} ⊆ {𝐶}))
1210, 11mpbii 233 . . . . . . . 8 ({𝐴, {𝐵}} = {𝐶} → {𝐴} ⊆ {𝐶})
1312adantl 481 . . . . . . 7 (({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶}) → {𝐴} ⊆ {𝐶})
14 snsspr1 4781 . . . . . . . . 9 {𝐶} ⊆ {𝐶, {𝐷}}
15 sseq2 3976 . . . . . . . . 9 ({𝐴} = {𝐶, {𝐷}} → ({𝐶} ⊆ {𝐴} ↔ {𝐶} ⊆ {𝐶, {𝐷}}))
1614, 15mpbiri 258 . . . . . . . 8 ({𝐴} = {𝐶, {𝐷}} → {𝐶} ⊆ {𝐴})
1716adantr 480 . . . . . . 7 (({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶}) → {𝐶} ⊆ {𝐴})
1813, 17eqssd 3967 . . . . . 6 (({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶}) → {𝐴} = {𝐶})
199, 18jaoi 857 . . . . 5 ((({𝐴} = {𝐶} ∧ {𝐴, {𝐵}} = {𝐶, {𝐷}}) ∨ ({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶})) → {𝐴} = {𝐶})
208, 19sylbi 217 . . . 4 ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → {𝐴} = {𝐶})
21 uneq1 4127 . . . . . . . . . 10 ({𝐴} = {𝐶} → ({𝐴} ∪ {{𝐵}}) = ({𝐶} ∪ {{𝐵}}))
22 df-pr 4595 . . . . . . . . . 10 {𝐴, {𝐵}} = ({𝐴} ∪ {{𝐵}})
23 df-pr 4595 . . . . . . . . . 10 {𝐶, {𝐵}} = ({𝐶} ∪ {{𝐵}})
2421, 22, 233eqtr4g 2790 . . . . . . . . 9 ({𝐴} = {𝐶} → {𝐴, {𝐵}} = {𝐶, {𝐵}})
2524preq2d 4707 . . . . . . . 8 ({𝐴} = {𝐶} → {{𝐴}, {𝐴, {𝐵}}} = {{𝐴}, {𝐶, {𝐵}}})
26 preq1 4700 . . . . . . . 8 ({𝐴} = {𝐶} → {{𝐴}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐵}}})
2725, 26eqtrd 2765 . . . . . . 7 ({𝐴} = {𝐶} → {{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐵}}})
2827eqeq1d 2732 . . . . . 6 ({𝐴} = {𝐶} → ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} ↔ {{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}}))
2928biimpd 229 . . . . 5 ({𝐴} = {𝐶} → ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → {{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}}))
30 prex 5395 . . . . . . 7 {𝐶, {𝐵}} ∈ V
3130, 7preqr2 4816 . . . . . 6 ({{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → {𝐶, {𝐵}} = {𝐶, {𝐷}})
32 snex 5394 . . . . . . 7 {𝐵} ∈ V
33 snex 5394 . . . . . . 7 {𝐷} ∈ V
3432, 33preqr2 4816 . . . . . 6 ({𝐶, {𝐵}} = {𝐶, {𝐷}} → {𝐵} = {𝐷})
3531, 34syl 17 . . . . 5 ({{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → {𝐵} = {𝐷})
3629, 35syl6com 37 . . . 4 ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → ({𝐴} = {𝐶} → {𝐵} = {𝐷}))
3720, 36jcai 516 . . 3 ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}))
38 preq2 4701 . . . . 5 ({𝐵} = {𝐷} → {𝐶, {𝐵}} = {𝐶, {𝐷}})
3938preq2d 4707 . . . 4 ({𝐵} = {𝐷} → {{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}})
4027, 39sylan9eq 2785 . . 3 (({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}) → {{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}})
4137, 40impbii 209 . 2 ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}))
423, 41bitri 275 1 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  cun 3915  wss 3917  {csn 4592  {cpr 4594  caltop 35951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-altop 35953
This theorem is referenced by:  altopeq12  35957  altopth1  35960  altopth2  35961  altopthg  35962  altopthbg  35963
  Copyright terms: Public domain W3C validator