Proof of Theorem altopthsn
Step | Hyp | Ref
| Expression |
1 | | df-altop 34260 |
. . 3
⊢
⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} |
2 | | df-altop 34260 |
. . 3
⊢
⟪𝐶, 𝐷⟫ = {{𝐶}, {𝐶, {𝐷}}} |
3 | 1, 2 | eqeq12i 2756 |
. 2
⊢
(⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ {{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}}) |
4 | | snex 5354 |
. . . . . 6
⊢ {𝐴} ∈ V |
5 | | prex 5355 |
. . . . . 6
⊢ {𝐴, {𝐵}} ∈ V |
6 | | snex 5354 |
. . . . . 6
⊢ {𝐶} ∈ V |
7 | | prex 5355 |
. . . . . 6
⊢ {𝐶, {𝐷}} ∈ V |
8 | 4, 5, 6, 7 | preq12b 4781 |
. . . . 5
⊢ ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} ↔ (({𝐴} = {𝐶} ∧ {𝐴, {𝐵}} = {𝐶, {𝐷}}) ∨ ({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶}))) |
9 | | simpl 483 |
. . . . . 6
⊢ (({𝐴} = {𝐶} ∧ {𝐴, {𝐵}} = {𝐶, {𝐷}}) → {𝐴} = {𝐶}) |
10 | | snsspr1 4747 |
. . . . . . . . 9
⊢ {𝐴} ⊆ {𝐴, {𝐵}} |
11 | | sseq2 3947 |
. . . . . . . . 9
⊢ ({𝐴, {𝐵}} = {𝐶} → ({𝐴} ⊆ {𝐴, {𝐵}} ↔ {𝐴} ⊆ {𝐶})) |
12 | 10, 11 | mpbii 232 |
. . . . . . . 8
⊢ ({𝐴, {𝐵}} = {𝐶} → {𝐴} ⊆ {𝐶}) |
13 | 12 | adantl 482 |
. . . . . . 7
⊢ (({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶}) → {𝐴} ⊆ {𝐶}) |
14 | | snsspr1 4747 |
. . . . . . . . 9
⊢ {𝐶} ⊆ {𝐶, {𝐷}} |
15 | | sseq2 3947 |
. . . . . . . . 9
⊢ ({𝐴} = {𝐶, {𝐷}} → ({𝐶} ⊆ {𝐴} ↔ {𝐶} ⊆ {𝐶, {𝐷}})) |
16 | 14, 15 | mpbiri 257 |
. . . . . . . 8
⊢ ({𝐴} = {𝐶, {𝐷}} → {𝐶} ⊆ {𝐴}) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ (({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶}) → {𝐶} ⊆ {𝐴}) |
18 | 13, 17 | eqssd 3938 |
. . . . . 6
⊢ (({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶}) → {𝐴} = {𝐶}) |
19 | 9, 18 | jaoi 854 |
. . . . 5
⊢ ((({𝐴} = {𝐶} ∧ {𝐴, {𝐵}} = {𝐶, {𝐷}}) ∨ ({𝐴} = {𝐶, {𝐷}} ∧ {𝐴, {𝐵}} = {𝐶})) → {𝐴} = {𝐶}) |
20 | 8, 19 | sylbi 216 |
. . . 4
⊢ ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → {𝐴} = {𝐶}) |
21 | | uneq1 4090 |
. . . . . . . . . 10
⊢ ({𝐴} = {𝐶} → ({𝐴} ∪ {{𝐵}}) = ({𝐶} ∪ {{𝐵}})) |
22 | | df-pr 4564 |
. . . . . . . . . 10
⊢ {𝐴, {𝐵}} = ({𝐴} ∪ {{𝐵}}) |
23 | | df-pr 4564 |
. . . . . . . . . 10
⊢ {𝐶, {𝐵}} = ({𝐶} ∪ {{𝐵}}) |
24 | 21, 22, 23 | 3eqtr4g 2803 |
. . . . . . . . 9
⊢ ({𝐴} = {𝐶} → {𝐴, {𝐵}} = {𝐶, {𝐵}}) |
25 | 24 | preq2d 4676 |
. . . . . . . 8
⊢ ({𝐴} = {𝐶} → {{𝐴}, {𝐴, {𝐵}}} = {{𝐴}, {𝐶, {𝐵}}}) |
26 | | preq1 4669 |
. . . . . . . 8
⊢ ({𝐴} = {𝐶} → {{𝐴}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐵}}}) |
27 | 25, 26 | eqtrd 2778 |
. . . . . . 7
⊢ ({𝐴} = {𝐶} → {{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐵}}}) |
28 | 27 | eqeq1d 2740 |
. . . . . 6
⊢ ({𝐴} = {𝐶} → ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} ↔ {{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}})) |
29 | 28 | biimpd 228 |
. . . . 5
⊢ ({𝐴} = {𝐶} → ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → {{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}})) |
30 | | prex 5355 |
. . . . . . 7
⊢ {𝐶, {𝐵}} ∈ V |
31 | 30, 7 | preqr2 4780 |
. . . . . 6
⊢ ({{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → {𝐶, {𝐵}} = {𝐶, {𝐷}}) |
32 | | snex 5354 |
. . . . . . 7
⊢ {𝐵} ∈ V |
33 | | snex 5354 |
. . . . . . 7
⊢ {𝐷} ∈ V |
34 | 32, 33 | preqr2 4780 |
. . . . . 6
⊢ ({𝐶, {𝐵}} = {𝐶, {𝐷}} → {𝐵} = {𝐷}) |
35 | 31, 34 | syl 17 |
. . . . 5
⊢ ({{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → {𝐵} = {𝐷}) |
36 | 29, 35 | syl6com 37 |
. . . 4
⊢ ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → ({𝐴} = {𝐶} → {𝐵} = {𝐷})) |
37 | 20, 36 | jcai 517 |
. . 3
⊢ ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} → ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) |
38 | | preq2 4670 |
. . . . 5
⊢ ({𝐵} = {𝐷} → {𝐶, {𝐵}} = {𝐶, {𝐷}}) |
39 | 38 | preq2d 4676 |
. . . 4
⊢ ({𝐵} = {𝐷} → {{𝐶}, {𝐶, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}}) |
40 | 27, 39 | sylan9eq 2798 |
. . 3
⊢ (({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}) → {{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}}) |
41 | 37, 40 | impbii 208 |
. 2
⊢ ({{𝐴}, {𝐴, {𝐵}}} = {{𝐶}, {𝐶, {𝐷}}} ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) |
42 | 3, 41 | bitri 274 |
1
⊢
(⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) |