![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltgov | Structured version Visualization version GIF version |
Description: Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
legso.f | ⊢ (𝜑 → Fun − ) |
legso.l | ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) |
legso.d | ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) |
ltgov.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ltgov.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
ltgov | ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legso.l | . . . . 5 ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) | |
2 | 1 | breqi 4792 | . . . 4 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ (𝐴 − 𝐵)(( ≤ ↾ 𝐸) ∖ I )(𝐶 − 𝐷)) |
3 | brdif 4839 | . . . 4 ⊢ ((𝐴 − 𝐵)(( ≤ ↾ 𝐸) ∖ I )(𝐶 − 𝐷) ↔ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) | |
4 | 2, 3 | bitri 264 | . . 3 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) |
5 | ovex 6822 | . . . . 5 ⊢ (𝐶 − 𝐷) ∈ V | |
6 | 5 | brres 5543 | . . . 4 ⊢ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ∈ 𝐸)) |
7 | 6 | anbi1i 602 | . . 3 ⊢ (((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ∈ 𝐸) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) |
8 | anass 459 | . . 3 ⊢ ((((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ∈ 𝐸) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) | |
9 | 4, 7, 8 | 3bitri 286 | . 2 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) |
10 | 5 | ideq 5413 | . . . . 5 ⊢ ((𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
11 | 10 | necon3bbii 2990 | . . . 4 ⊢ (¬ (𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) |
12 | ltgov.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
13 | ltgov.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
14 | legso.f | . . . . . . 7 ⊢ (𝜑 → Fun − ) | |
15 | legso.d | . . . . . . 7 ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) | |
16 | 12, 13, 14, 15 | elovimad 6837 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ( − “ (𝑃 × 𝑃))) |
17 | legso.a | . . . . . 6 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
18 | 16, 17 | syl6eleqr 2861 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ 𝐸) |
19 | 18 | biantrurd 516 | . . . 4 ⊢ (𝜑 → (¬ (𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) |
20 | 11, 19 | syl5rbbr 275 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷))) |
21 | 20 | anbi2d 606 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
22 | 9, 21 | syl5bb 272 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 ⊆ wss 3723 class class class wbr 4786 I cid 5156 × cxp 5247 dom cdm 5249 ↾ cres 5251 “ cima 5252 Fun wfun 6025 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 distcds 16157 TarskiGcstrkg 25549 Itvcitv 25555 ≤Gcleg 25697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 df-ov 6795 |
This theorem is referenced by: legov3 25713 legso 25714 |
Copyright terms: Public domain | W3C validator |