![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltgov | Structured version Visualization version GIF version |
Description: Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
legso.f | ⊢ (𝜑 → Fun − ) |
legso.l | ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) |
legso.d | ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) |
ltgov.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ltgov.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
ltgov | ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legso.l | . . . . 5 ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) | |
2 | 1 | breqi 5172 | . . . 4 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ (𝐴 − 𝐵)(( ≤ ↾ 𝐸) ∖ I )(𝐶 − 𝐷)) |
3 | brdif 5219 | . . . 4 ⊢ ((𝐴 − 𝐵)(( ≤ ↾ 𝐸) ∖ I )(𝐶 − 𝐷) ↔ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) | |
4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) |
5 | ovex 7481 | . . . . 5 ⊢ (𝐶 − 𝐷) ∈ V | |
6 | 5 | brresi 6018 | . . . 4 ⊢ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) |
7 | 6 | anbi1i 623 | . . 3 ⊢ (((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ (((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) |
8 | an21 643 | . . 3 ⊢ ((((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) | |
9 | 4, 7, 8 | 3bitri 297 | . 2 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) |
10 | ltgov.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | ltgov.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | legso.f | . . . . . . 7 ⊢ (𝜑 → Fun − ) | |
13 | legso.d | . . . . . . 7 ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) | |
14 | 10, 11, 12, 13 | elovimad 7498 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ( − “ (𝑃 × 𝑃))) |
15 | legso.a | . . . . . 6 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
16 | 14, 15 | eleqtrrdi 2855 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ 𝐸) |
17 | 16 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (¬ (𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) |
18 | 5 | ideq 5877 | . . . . 5 ⊢ ((𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
19 | 18 | necon3bbii 2994 | . . . 4 ⊢ (¬ (𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) |
20 | 17, 19 | bitr3di 286 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷))) |
21 | 20 | anbi2d 629 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
22 | 9, 21 | bitrid 283 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ⊆ wss 3976 class class class wbr 5166 I cid 5592 × cxp 5698 dom cdm 5700 ↾ cres 5702 “ cima 5703 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 ≤Gcleg 28608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 |
This theorem is referenced by: legov3 28624 legso 28625 |
Copyright terms: Public domain | W3C validator |