Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltgov | Structured version Visualization version GIF version |
Description: Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
legso.f | ⊢ (𝜑 → Fun − ) |
legso.l | ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) |
legso.d | ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) |
ltgov.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ltgov.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
ltgov | ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legso.l | . . . . 5 ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) | |
2 | 1 | breqi 5076 | . . . 4 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ (𝐴 − 𝐵)(( ≤ ↾ 𝐸) ∖ I )(𝐶 − 𝐷)) |
3 | brdif 5123 | . . . 4 ⊢ ((𝐴 − 𝐵)(( ≤ ↾ 𝐸) ∖ I )(𝐶 − 𝐷) ↔ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) | |
4 | 2, 3 | bitri 274 | . . 3 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) |
5 | ovex 7288 | . . . . 5 ⊢ (𝐶 − 𝐷) ∈ V | |
6 | 5 | brresi 5889 | . . . 4 ⊢ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) |
7 | 6 | anbi1i 623 | . . 3 ⊢ (((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ (((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) |
8 | an21 640 | . . 3 ⊢ ((((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) | |
9 | 4, 7, 8 | 3bitri 296 | . 2 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) |
10 | ltgov.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | ltgov.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | legso.f | . . . . . . 7 ⊢ (𝜑 → Fun − ) | |
13 | legso.d | . . . . . . 7 ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) | |
14 | 10, 11, 12, 13 | elovimad 7303 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ( − “ (𝑃 × 𝑃))) |
15 | legso.a | . . . . . 6 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
16 | 14, 15 | eleqtrrdi 2850 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ 𝐸) |
17 | 16 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (¬ (𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) |
18 | 5 | ideq 5750 | . . . . 5 ⊢ ((𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
19 | 18 | necon3bbii 2990 | . . . 4 ⊢ (¬ (𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) |
20 | 17, 19 | bitr3di 285 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷))) |
21 | 20 | anbi2d 628 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
22 | 9, 21 | syl5bb 282 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ⊆ wss 3883 class class class wbr 5070 I cid 5479 × cxp 5578 dom cdm 5580 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 ≤Gcleg 26847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 |
This theorem is referenced by: legov3 26863 legso 26864 |
Copyright terms: Public domain | W3C validator |