MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltgov Structured version   Visualization version   GIF version

Theorem ltgov 28575
Description: Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
legso.l < = (( 𝐸) ∖ I )
legso.d (𝜑 → (𝑃 × 𝑃) ⊆ dom )
ltgov.a (𝜑𝐴𝑃)
ltgov.b (𝜑𝐵𝑃)
Assertion
Ref Expression
ltgov (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))

Proof of Theorem ltgov
StepHypRef Expression
1 legso.l . . . . 5 < = (( 𝐸) ∖ I )
21breqi 5095 . . . 4 ((𝐴 𝐵) < (𝐶 𝐷) ↔ (𝐴 𝐵)(( 𝐸) ∖ I )(𝐶 𝐷))
3 brdif 5142 . . . 4 ((𝐴 𝐵)(( 𝐸) ∖ I )(𝐶 𝐷) ↔ ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
42, 3bitri 275 . . 3 ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
5 ovex 7379 . . . . 5 (𝐶 𝐷) ∈ V
65brresi 5936 . . . 4 ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ↔ ((𝐴 𝐵) ∈ 𝐸 ∧ (𝐴 𝐵) (𝐶 𝐷)))
76anbi1i 624 . . 3 (((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ (((𝐴 𝐵) ∈ 𝐸 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
8 an21 644 . . 3 ((((𝐴 𝐵) ∈ 𝐸 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
94, 7, 83bitri 297 . 2 ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
10 ltgov.a . . . . . . 7 (𝜑𝐴𝑃)
11 ltgov.b . . . . . . 7 (𝜑𝐵𝑃)
12 legso.f . . . . . . 7 (𝜑 → Fun )
13 legso.d . . . . . . 7 (𝜑 → (𝑃 × 𝑃) ⊆ dom )
1410, 11, 12, 13elovimad 7396 . . . . . 6 (𝜑 → (𝐴 𝐵) ∈ ( “ (𝑃 × 𝑃)))
15 legso.a . . . . . 6 𝐸 = ( “ (𝑃 × 𝑃))
1614, 15eleqtrrdi 2842 . . . . 5 (𝜑 → (𝐴 𝐵) ∈ 𝐸)
1716biantrurd 532 . . . 4 (𝜑 → (¬ (𝐴 𝐵) I (𝐶 𝐷) ↔ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
185ideq 5791 . . . . 5 ((𝐴 𝐵) I (𝐶 𝐷) ↔ (𝐴 𝐵) = (𝐶 𝐷))
1918necon3bbii 2975 . . . 4 (¬ (𝐴 𝐵) I (𝐶 𝐷) ↔ (𝐴 𝐵) ≠ (𝐶 𝐷))
2017, 19bitr3di 286 . . 3 (𝜑 → (((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ (𝐴 𝐵) ≠ (𝐶 𝐷)))
2120anbi2d 630 . 2 (𝜑 → (((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
229, 21bitrid 283 1 (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  wss 3897   class class class wbr 5089   I cid 5508   × cxp 5612  dom cdm 5614  cres 5616  cima 5617  Fun wfun 6475  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411  ≤Gcleg 28560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349
This theorem is referenced by:  legov3  28576  legso  28577
  Copyright terms: Public domain W3C validator