MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltgov Structured version   Visualization version   GIF version

Theorem ltgov 28546
Description: Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
legso.l < = (( 𝐸) ∖ I )
legso.d (𝜑 → (𝑃 × 𝑃) ⊆ dom )
ltgov.a (𝜑𝐴𝑃)
ltgov.b (𝜑𝐵𝑃)
Assertion
Ref Expression
ltgov (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))

Proof of Theorem ltgov
StepHypRef Expression
1 legso.l . . . . 5 < = (( 𝐸) ∖ I )
21breqi 5098 . . . 4 ((𝐴 𝐵) < (𝐶 𝐷) ↔ (𝐴 𝐵)(( 𝐸) ∖ I )(𝐶 𝐷))
3 brdif 5145 . . . 4 ((𝐴 𝐵)(( 𝐸) ∖ I )(𝐶 𝐷) ↔ ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
42, 3bitri 275 . . 3 ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
5 ovex 7382 . . . . 5 (𝐶 𝐷) ∈ V
65brresi 5939 . . . 4 ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ↔ ((𝐴 𝐵) ∈ 𝐸 ∧ (𝐴 𝐵) (𝐶 𝐷)))
76anbi1i 624 . . 3 (((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ (((𝐴 𝐵) ∈ 𝐸 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
8 an21 644 . . 3 ((((𝐴 𝐵) ∈ 𝐸 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
94, 7, 83bitri 297 . 2 ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
10 ltgov.a . . . . . . 7 (𝜑𝐴𝑃)
11 ltgov.b . . . . . . 7 (𝜑𝐵𝑃)
12 legso.f . . . . . . 7 (𝜑 → Fun )
13 legso.d . . . . . . 7 (𝜑 → (𝑃 × 𝑃) ⊆ dom )
1410, 11, 12, 13elovimad 7399 . . . . . 6 (𝜑 → (𝐴 𝐵) ∈ ( “ (𝑃 × 𝑃)))
15 legso.a . . . . . 6 𝐸 = ( “ (𝑃 × 𝑃))
1614, 15eleqtrrdi 2839 . . . . 5 (𝜑 → (𝐴 𝐵) ∈ 𝐸)
1716biantrurd 532 . . . 4 (𝜑 → (¬ (𝐴 𝐵) I (𝐶 𝐷) ↔ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
185ideq 5795 . . . . 5 ((𝐴 𝐵) I (𝐶 𝐷) ↔ (𝐴 𝐵) = (𝐶 𝐷))
1918necon3bbii 2972 . . . 4 (¬ (𝐴 𝐵) I (𝐶 𝐷) ↔ (𝐴 𝐵) ≠ (𝐶 𝐷))
2017, 19bitr3di 286 . . 3 (𝜑 → (((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ (𝐴 𝐵) ≠ (𝐶 𝐷)))
2120anbi2d 630 . 2 (𝜑 → (((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
229, 21bitrid 283 1 (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  wss 3903   class class class wbr 5092   I cid 5513   × cxp 5617  dom cdm 5619  cres 5621  cima 5622  Fun wfun 6476  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28376  Itvcitv 28382  ≤Gcleg 28531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352
This theorem is referenced by:  legov3  28547  legso  28548
  Copyright terms: Public domain W3C validator