| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltgov | Structured version Visualization version GIF version | ||
| Description: Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| legval.p | ⊢ 𝑃 = (Base‘𝐺) |
| legval.d | ⊢ − = (dist‘𝐺) |
| legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| legval.l | ⊢ ≤ = (≤G‘𝐺) |
| legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
| legso.f | ⊢ (𝜑 → Fun − ) |
| legso.l | ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) |
| legso.d | ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) |
| ltgov.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ltgov.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| ltgov | ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | legso.l | . . . . 5 ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) | |
| 2 | 1 | breqi 5116 | . . . 4 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ (𝐴 − 𝐵)(( ≤ ↾ 𝐸) ∖ I )(𝐶 − 𝐷)) |
| 3 | brdif 5163 | . . . 4 ⊢ ((𝐴 − 𝐵)(( ≤ ↾ 𝐸) ∖ I )(𝐶 − 𝐷) ↔ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) |
| 5 | ovex 7423 | . . . . 5 ⊢ (𝐶 − 𝐷) ∈ V | |
| 6 | 5 | brresi 5962 | . . . 4 ⊢ ((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) |
| 7 | 6 | anbi1i 624 | . . 3 ⊢ (((𝐴 − 𝐵)( ≤ ↾ 𝐸)(𝐶 − 𝐷) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ (((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) |
| 8 | an21 644 | . . 3 ⊢ ((((𝐴 − 𝐵) ∈ 𝐸 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) | |
| 9 | 4, 7, 8 | 3bitri 297 | . 2 ⊢ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) |
| 10 | ltgov.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | ltgov.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 12 | legso.f | . . . . . . 7 ⊢ (𝜑 → Fun − ) | |
| 13 | legso.d | . . . . . . 7 ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) | |
| 14 | 10, 11, 12, 13 | elovimad 7440 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ( − “ (𝑃 × 𝑃))) |
| 15 | legso.a | . . . . . 6 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
| 16 | 14, 15 | eleqtrrdi 2840 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ 𝐸) |
| 17 | 16 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (¬ (𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)))) |
| 18 | 5 | ideq 5819 | . . . . 5 ⊢ ((𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| 19 | 18 | necon3bbii 2973 | . . . 4 ⊢ (¬ (𝐴 − 𝐵) I (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) |
| 20 | 17, 19 | bitr3di 286 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷)) ↔ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷))) |
| 21 | 20 | anbi2d 630 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ ((𝐴 − 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 − 𝐵) I (𝐶 − 𝐷))) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
| 22 | 9, 21 | bitrid 283 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ⊆ wss 3917 class class class wbr 5110 I cid 5535 × cxp 5639 dom cdm 5641 ↾ cres 5643 “ cima 5644 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 ≤Gcleg 28516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: legov3 28532 legso 28533 |
| Copyright terms: Public domain | W3C validator |