MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfac2 Structured version   Visualization version   GIF version

Theorem logfac2 27180
Description: Another expression for the logarithm of a factorial, in terms of the von Mangoldt function. Equation 9.2.7 of [Shapiro], p. 329. (Contributed by Mario Carneiro, 15-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Assertion
Ref Expression
logfac2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem logfac2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flge0nn0 13837 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2 logfac 26562 . . 3 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
31, 2syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
4 fzfid 13991 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
5 fzfid 13991 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ∈ Fin)
6 ssrab2 4055 . . . . 5 {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ⊆ (1...(⌊‘𝐴))
7 ssfi 9187 . . . . 5 (((1...(⌊‘𝐴)) ∈ Fin ∧ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ⊆ (1...(⌊‘𝐴))) → {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin)
85, 6, 7sylancl 586 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin)
9 flcl 13812 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ)
11 fznn 13609 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴))))
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴))))
1312anbi1d 631 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ ((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
14 nnre 12247 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1514ad2antlr 727 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ∈ ℝ)
16 elfznn 13570 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
1716ad2antrl 728 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ∈ ℕ)
1817nnred 12255 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ∈ ℝ)
19 reflcl 13813 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
2019ad3antrrr 730 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → (⌊‘𝐴) ∈ ℝ)
21 simprr 772 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘𝑛)
22 nnz 12609 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2322ad2antlr 727 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ∈ ℤ)
24 dvdsle 16329 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑘𝑛𝑘𝑛))
2523, 17, 24syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → (𝑘𝑛𝑘𝑛))
2621, 25mpd 15 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘𝑛)
27 elfzle2 13545 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ≤ (⌊‘𝐴))
2827ad2antrl 728 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ≤ (⌊‘𝐴))
2915, 18, 20, 26, 28letrd 11392 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ≤ (⌊‘𝐴))
3029expl 457 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ≤ (⌊‘𝐴)))
3130pm4.71rd 562 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))))
32 an12 645 . . . . . . 7 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)) ↔ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))
33 an21 644 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3431, 32, 333bitr4g 314 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)) ↔ ((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3513, 34bitr4d 282 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛))))
36 breq2 5123 . . . . . . 7 (𝑥 = 𝑛 → (𝑘𝑥𝑘𝑛))
3736elrab 3671 . . . . . 6 (𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))
3837anbi2i 623 . . . . 5 ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))
39 breq1 5122 . . . . . . 7 (𝑥 = 𝑘 → (𝑥𝑛𝑘𝑛))
4039elrab 3671 . . . . . 6 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑛))
4140anbi2i 623 . . . . 5 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)))
4235, 38, 413bitr4g 314 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})))
43 elfznn 13570 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝐴)) → 𝑘 ∈ ℕ)
4443adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝑘 ∈ ℕ)
45 vmacl 27080 . . . . . . 7 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
4644, 45syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑘) ∈ ℝ)
4746recnd 11263 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑘) ∈ ℂ)
4847adantrr 717 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})) → (Λ‘𝑘) ∈ ℂ)
494, 4, 8, 42, 48fsumcom2 15790 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘))
50 fsumconst 15806 . . . . . 6 (({𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin ∧ (Λ‘𝑘) ∈ ℂ) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)))
518, 47, 50syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)))
52 fzfid 13991 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑘))) ∈ Fin)
53 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
54 eqid 2735 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)) = (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚))
5553, 44, 54dvdsflf1o 27149 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)):(1...(⌊‘(𝐴 / 𝑘)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})
5652, 55hasheqf1od 14371 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (♯‘(1...(⌊‘(𝐴 / 𝑘)))) = (♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}))
57 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
58 nndivre 12281 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ)
5957, 43, 58syl2an 596 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑘) ∈ ℝ)
60 nngt0 12271 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 < 𝑘)
6114, 60jca 511 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
6243, 61syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝐴)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
63 divge0 12111 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ (𝐴 / 𝑘))
6462, 63sylan2 593 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ≤ (𝐴 / 𝑘))
65 flge0nn0 13837 . . . . . . . . 9 (((𝐴 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑘)) → (⌊‘(𝐴 / 𝑘)) ∈ ℕ0)
6659, 64, 65syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℕ0)
67 hashfz1 14364 . . . . . . . 8 ((⌊‘(𝐴 / 𝑘)) ∈ ℕ0 → (♯‘(1...(⌊‘(𝐴 / 𝑘)))) = (⌊‘(𝐴 / 𝑘)))
6866, 67syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (♯‘(1...(⌊‘(𝐴 / 𝑘)))) = (⌊‘(𝐴 / 𝑘)))
6956, 68eqtr3d 2772 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) = (⌊‘(𝐴 / 𝑘)))
7069oveq1d 7420 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → ((♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)) = ((⌊‘(𝐴 / 𝑘)) · (Λ‘𝑘)))
7159flcld 13815 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℤ)
7271zcnd 12698 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℂ)
7372, 47mulcomd 11256 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → ((⌊‘(𝐴 / 𝑘)) · (Λ‘𝑘)) = ((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
7451, 70, 733eqtrd 2774 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
7574sumeq2dv 15718 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
7616adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
77 vmasum 27179 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = (log‘𝑛))
7876, 77syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = (log‘𝑛))
7978sumeq2dv 15718 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
8049, 75, 793eqtr3d 2778 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
813, 80eqtr4d 2773 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  wss 3926   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  ...cfz 13524  cfl 13807  !cfa 14291  chash 14348  Σcsu 15702  cdvds 16272  logclog 26515  Λcvma 27054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-vma 27060
This theorem is referenced by:  vmadivsum  27445
  Copyright terms: Public domain W3C validator