MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfac2 Structured version   Visualization version   GIF version

Theorem logfac2 26098
Description: Another expression for the logarithm of a factorial, in terms of the von Mangoldt function. Equation 9.2.7 of [Shapiro], p. 329. (Contributed by Mario Carneiro, 15-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Assertion
Ref Expression
logfac2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem logfac2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flge0nn0 13395 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2 logfac 25489 . . 3 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
31, 2syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
4 fzfid 13546 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
5 fzfid 13546 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ∈ Fin)
6 ssrab2 3993 . . . . 5 {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ⊆ (1...(⌊‘𝐴))
7 ssfi 8851 . . . . 5 (((1...(⌊‘𝐴)) ∈ Fin ∧ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ⊆ (1...(⌊‘𝐴))) → {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin)
85, 6, 7sylancl 589 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin)
9 flcl 13370 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
109adantr 484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ)
11 fznn 13180 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴))))
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴))))
1312anbi1d 633 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ ((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
14 nnre 11837 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1514ad2antlr 727 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ∈ ℝ)
16 elfznn 13141 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
1716ad2antrl 728 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ∈ ℕ)
1817nnred 11845 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ∈ ℝ)
19 reflcl 13371 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
2019ad3antrrr 730 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → (⌊‘𝐴) ∈ ℝ)
21 simprr 773 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘𝑛)
22 nnz 12199 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2322ad2antlr 727 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ∈ ℤ)
24 dvdsle 15871 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑘𝑛𝑘𝑛))
2523, 17, 24syl2anc 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → (𝑘𝑛𝑘𝑛))
2621, 25mpd 15 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘𝑛)
27 elfzle2 13116 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ≤ (⌊‘𝐴))
2827ad2antrl 728 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ≤ (⌊‘𝐴))
2915, 18, 20, 26, 28letrd 10989 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ≤ (⌊‘𝐴))
3029expl 461 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ≤ (⌊‘𝐴)))
3130pm4.71rd 566 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))))
32 an12 645 . . . . . . 7 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)) ↔ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))
33 an21 644 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3431, 32, 333bitr4g 317 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)) ↔ ((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3513, 34bitr4d 285 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛))))
36 breq2 5057 . . . . . . 7 (𝑥 = 𝑛 → (𝑘𝑥𝑘𝑛))
3736elrab 3602 . . . . . 6 (𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))
3837anbi2i 626 . . . . 5 ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))
39 breq1 5056 . . . . . . 7 (𝑥 = 𝑘 → (𝑥𝑛𝑘𝑛))
4039elrab 3602 . . . . . 6 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑛))
4140anbi2i 626 . . . . 5 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)))
4235, 38, 413bitr4g 317 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})))
43 elfznn 13141 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝐴)) → 𝑘 ∈ ℕ)
4443adantl 485 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝑘 ∈ ℕ)
45 vmacl 26000 . . . . . . 7 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
4644, 45syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑘) ∈ ℝ)
4746recnd 10861 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑘) ∈ ℂ)
4847adantrr 717 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})) → (Λ‘𝑘) ∈ ℂ)
494, 4, 8, 42, 48fsumcom2 15338 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘))
50 fsumconst 15354 . . . . . 6 (({𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin ∧ (Λ‘𝑘) ∈ ℂ) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)))
518, 47, 50syl2anc 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)))
52 fzfid 13546 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑘))) ∈ Fin)
53 simpll 767 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
54 eqid 2737 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)) = (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚))
5553, 44, 54dvdsflf1o 26069 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)):(1...(⌊‘(𝐴 / 𝑘)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})
5652, 55hasheqf1od 13920 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (♯‘(1...(⌊‘(𝐴 / 𝑘)))) = (♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}))
57 simpl 486 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
58 nndivre 11871 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ)
5957, 43, 58syl2an 599 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑘) ∈ ℝ)
60 nngt0 11861 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 < 𝑘)
6114, 60jca 515 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
6243, 61syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝐴)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
63 divge0 11701 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ (𝐴 / 𝑘))
6462, 63sylan2 596 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ≤ (𝐴 / 𝑘))
65 flge0nn0 13395 . . . . . . . . 9 (((𝐴 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑘)) → (⌊‘(𝐴 / 𝑘)) ∈ ℕ0)
6659, 64, 65syl2anc 587 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℕ0)
67 hashfz1 13912 . . . . . . . 8 ((⌊‘(𝐴 / 𝑘)) ∈ ℕ0 → (♯‘(1...(⌊‘(𝐴 / 𝑘)))) = (⌊‘(𝐴 / 𝑘)))
6866, 67syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (♯‘(1...(⌊‘(𝐴 / 𝑘)))) = (⌊‘(𝐴 / 𝑘)))
6956, 68eqtr3d 2779 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) = (⌊‘(𝐴 / 𝑘)))
7069oveq1d 7228 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → ((♯‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)) = ((⌊‘(𝐴 / 𝑘)) · (Λ‘𝑘)))
7159flcld 13373 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℤ)
7271zcnd 12283 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℂ)
7372, 47mulcomd 10854 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → ((⌊‘(𝐴 / 𝑘)) · (Λ‘𝑘)) = ((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
7451, 70, 733eqtrd 2781 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
7574sumeq2dv 15267 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
7616adantl 485 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
77 vmasum 26097 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = (log‘𝑛))
7876, 77syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = (log‘𝑛))
7978sumeq2dv 15267 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
8049, 75, 793eqtr3d 2785 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
813, 80eqtr4d 2780 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  {crab 3065  wss 3866   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  Fincfn 8626  cc 10727  cr 10728  0cc0 10729  1c1 10730   · cmul 10734   < clt 10867  cle 10868   / cdiv 11489  cn 11830  0cn0 12090  cz 12176  ...cfz 13095  cfl 13365  !cfa 13839  chash 13896  Σcsu 15249  cdvds 15815  logclog 25443  Λcvma 25974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-gcd 16054  df-prm 16229  df-pc 16390  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-vma 25980
This theorem is referenced by:  vmadivsum  26363
  Copyright terms: Public domain W3C validator