| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmqsres | Structured version Visualization version GIF version | ||
| Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| eldmqsres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg 8787 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ dom (𝑅 ↾ 𝐴)𝐵 = [𝑢](𝑅 ↾ 𝐴))) | |
| 2 | eldmres2 38298 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅))) | |
| 3 | 2 | elv 3469 | . . . . 5 ⊢ (𝑢 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅)) |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑢 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ ((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴))) |
| 5 | ecres2 38302 | . . . . . . . 8 ⊢ (𝑢 ∈ 𝐴 → [𝑢](𝑅 ↾ 𝐴) = [𝑢]𝑅) | |
| 6 | 5 | eqeq2d 2747 | . . . . . . 7 ⊢ (𝑢 ∈ 𝐴 → (𝐵 = [𝑢](𝑅 ↾ 𝐴) ↔ 𝐵 = [𝑢]𝑅)) |
| 7 | 6 | pm5.32i 574 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅)) |
| 8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴))) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅))) |
| 9 | an21 644 | . . . . 5 ⊢ (((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)))) | |
| 10 | an12 645 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅))) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | . . . 4 ⊢ (((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
| 12 | 4, 11 | bitri 275 | . . 3 ⊢ ((𝑢 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
| 13 | 12 | rexbii2 3080 | . 2 ⊢ (∃𝑢 ∈ dom (𝑅 ↾ 𝐴)𝐵 = [𝑢](𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅)) |
| 14 | 1, 13 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 dom cdm 5659 ↾ cres 5661 [cec 8722 / cqs 8723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ec 8726 df-qs 8730 |
| This theorem is referenced by: eldmqsres2 38311 |
| Copyright terms: Public domain | W3C validator |