Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqsres Structured version   Visualization version   GIF version

Theorem eldmqsres 38243
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020.)
Assertion
Ref Expression
eldmqsres (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵   𝑢,𝑅,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑢)

Proof of Theorem eldmqsres
StepHypRef Expression
1 elqsg 8826 . 2 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢 ∈ dom (𝑅𝐴)𝐵 = [𝑢](𝑅𝐴)))
2 eldmres2 38231 . . . . . 6 (𝑢 ∈ V → (𝑢 ∈ dom (𝑅𝐴) ↔ (𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅)))
32elv 3493 . . . . 5 (𝑢 ∈ dom (𝑅𝐴) ↔ (𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅))
43anbi1i 623 . . . 4 ((𝑢 ∈ dom (𝑅𝐴) ∧ 𝐵 = [𝑢](𝑅𝐴)) ↔ ((𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅𝐴)))
5 ecres2 38235 . . . . . . . 8 (𝑢𝐴 → [𝑢](𝑅𝐴) = [𝑢]𝑅)
65eqeq2d 2751 . . . . . . 7 (𝑢𝐴 → (𝐵 = [𝑢](𝑅𝐴) ↔ 𝐵 = [𝑢]𝑅))
76pm5.32i 574 . . . . . 6 ((𝑢𝐴𝐵 = [𝑢](𝑅𝐴)) ↔ (𝑢𝐴𝐵 = [𝑢]𝑅))
87anbi2i 622 . . . . 5 ((∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢𝐴𝐵 = [𝑢](𝑅𝐴))) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢𝐴𝐵 = [𝑢]𝑅)))
9 an21 643 . . . . 5 (((𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅𝐴)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢𝐴𝐵 = [𝑢](𝑅𝐴))))
10 an12 644 . . . . 5 ((𝑢𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢𝐴𝐵 = [𝑢]𝑅)))
118, 9, 103bitr4i 303 . . . 4 (((𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅𝐴)) ↔ (𝑢𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
124, 11bitri 275 . . 3 ((𝑢 ∈ dom (𝑅𝐴) ∧ 𝐵 = [𝑢](𝑅𝐴)) ↔ (𝑢𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
1312rexbii2 3096 . 2 (∃𝑢 ∈ dom (𝑅𝐴)𝐵 = [𝑢](𝑅𝐴) ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
141, 13bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488  dom cdm 5700  cres 5702  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769
This theorem is referenced by:  eldmqsres2  38244
  Copyright terms: Public domain W3C validator