| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmqsres | Structured version Visualization version GIF version | ||
| Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| eldmqsres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg 8694 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ dom (𝑅 ↾ 𝐴)𝐵 = [𝑢](𝑅 ↾ 𝐴))) | |
| 2 | eldmres2 38320 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅))) | |
| 3 | 2 | elv 3441 | . . . . 5 ⊢ (𝑢 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅)) |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑢 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ ((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴))) |
| 5 | elecreseq 8677 | . . . . . . . 8 ⊢ (𝑢 ∈ 𝐴 → [𝑢](𝑅 ↾ 𝐴) = [𝑢]𝑅) | |
| 6 | 5 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑢 ∈ 𝐴 → (𝐵 = [𝑢](𝑅 ↾ 𝐴) ↔ 𝐵 = [𝑢]𝑅)) |
| 7 | 6 | pm5.32i 574 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅)) |
| 8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴))) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅))) |
| 9 | an21 644 | . . . . 5 ⊢ (((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)))) | |
| 10 | an12 645 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅))) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | . . . 4 ⊢ (((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
| 12 | 4, 11 | bitri 275 | . . 3 ⊢ ((𝑢 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
| 13 | 12 | rexbii2 3075 | . 2 ⊢ (∃𝑢 ∈ dom (𝑅 ↾ 𝐴)𝐵 = [𝑢](𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅)) |
| 14 | 1, 13 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 dom cdm 5619 ↾ cres 5621 [cec 8626 / cqs 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-qs 8634 |
| This theorem is referenced by: eldmqsres2 38332 |
| Copyright terms: Public domain | W3C validator |