Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmqsres | Structured version Visualization version GIF version |
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020.) |
Ref | Expression |
---|---|
eldmqsres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsg 8557 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ dom (𝑅 ↾ 𝐴)𝐵 = [𝑢](𝑅 ↾ 𝐴))) | |
2 | eldmres2 36410 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅))) | |
3 | 2 | elv 3438 | . . . . 5 ⊢ (𝑢 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅)) |
4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑢 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ ((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴))) |
5 | ecres2 36414 | . . . . . . . 8 ⊢ (𝑢 ∈ 𝐴 → [𝑢](𝑅 ↾ 𝐴) = [𝑢]𝑅) | |
6 | 5 | eqeq2d 2749 | . . . . . . 7 ⊢ (𝑢 ∈ 𝐴 → (𝐵 = [𝑢](𝑅 ↾ 𝐴) ↔ 𝐵 = [𝑢]𝑅)) |
7 | 6 | pm5.32i 575 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅)) |
8 | 7 | anbi2i 623 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴))) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅))) |
9 | an21 641 | . . . . 5 ⊢ (((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)))) | |
10 | an12 642 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢 ∈ 𝐴 ∧ 𝐵 = [𝑢]𝑅))) | |
11 | 8, 9, 10 | 3bitr4i 303 | . . . 4 ⊢ (((𝑢 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
12 | 4, 11 | bitri 274 | . . 3 ⊢ ((𝑢 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑢](𝑅 ↾ 𝐴)) ↔ (𝑢 ∈ 𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
13 | 12 | rexbii2 3179 | . 2 ⊢ (∃𝑢 ∈ dom (𝑅 ↾ 𝐴)𝐵 = [𝑢](𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅)) |
14 | 1, 13 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom (𝑅 ↾ 𝐴) / (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑢]𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 dom cdm 5589 ↾ cres 5591 [cec 8496 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 |
This theorem is referenced by: eldmqsres2 36422 |
Copyright terms: Public domain | W3C validator |