Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqsres Structured version   Visualization version   GIF version

Theorem eldmqsres 37815
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020.)
Assertion
Ref Expression
eldmqsres (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵   𝑢,𝑅,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑢)

Proof of Theorem eldmqsres
StepHypRef Expression
1 elqsg 8785 . 2 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢 ∈ dom (𝑅𝐴)𝐵 = [𝑢](𝑅𝐴)))
2 eldmres2 37803 . . . . . 6 (𝑢 ∈ V → (𝑢 ∈ dom (𝑅𝐴) ↔ (𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅)))
32elv 3469 . . . . 5 (𝑢 ∈ dom (𝑅𝐴) ↔ (𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅))
43anbi1i 622 . . . 4 ((𝑢 ∈ dom (𝑅𝐴) ∧ 𝐵 = [𝑢](𝑅𝐴)) ↔ ((𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅𝐴)))
5 ecres2 37807 . . . . . . . 8 (𝑢𝐴 → [𝑢](𝑅𝐴) = [𝑢]𝑅)
65eqeq2d 2736 . . . . . . 7 (𝑢𝐴 → (𝐵 = [𝑢](𝑅𝐴) ↔ 𝐵 = [𝑢]𝑅))
76pm5.32i 573 . . . . . 6 ((𝑢𝐴𝐵 = [𝑢](𝑅𝐴)) ↔ (𝑢𝐴𝐵 = [𝑢]𝑅))
87anbi2i 621 . . . . 5 ((∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢𝐴𝐵 = [𝑢](𝑅𝐴))) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢𝐴𝐵 = [𝑢]𝑅)))
9 an21 642 . . . . 5 (((𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅𝐴)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢𝐴𝐵 = [𝑢](𝑅𝐴))))
10 an12 643 . . . . 5 ((𝑢𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)) ↔ (∃𝑥 𝑥 ∈ [𝑢]𝑅 ∧ (𝑢𝐴𝐵 = [𝑢]𝑅)))
118, 9, 103bitr4i 302 . . . 4 (((𝑢𝐴 ∧ ∃𝑥 𝑥 ∈ [𝑢]𝑅) ∧ 𝐵 = [𝑢](𝑅𝐴)) ↔ (𝑢𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
124, 11bitri 274 . . 3 ((𝑢 ∈ dom (𝑅𝐴) ∧ 𝐵 = [𝑢](𝑅𝐴)) ↔ (𝑢𝐴 ∧ (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
1312rexbii2 3080 . 2 (∃𝑢 ∈ dom (𝑅𝐴)𝐵 = [𝑢](𝑅𝐴) ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅))
141, 13bitrdi 286 1 (𝐵𝑉 → (𝐵 ∈ (dom (𝑅𝐴) / (𝑅𝐴)) ↔ ∃𝑢𝐴 (∃𝑥 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑢]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wrex 3060  Vcvv 3463  dom cdm 5672  cres 5674  [cec 8721   / cqs 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8725  df-qs 8729
This theorem is referenced by:  eldmqsres2  37816
  Copyright terms: Public domain W3C validator