Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrninxp2 Structured version   Visualization version   GIF version

Theorem xrninxp2 38394
Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 8-Apr-2020.)
Assertion
Ref Expression
xrninxp2 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥   𝑢,𝐶,𝑥   𝑢,𝑅,𝑥   𝑢,𝑆,𝑥

Proof of Theorem xrninxp2
StepHypRef Expression
1 inxp2 38368 . 2 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)}
2 an21 644 . . 3 (((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
32opabbii 5210 . 2 {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
41, 3eqtri 2765 1 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  cin 3950   class class class wbr 5143  {copab 5205   × cxp 5683  cxrn 38181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693
This theorem is referenced by:  inxpxrn  38396
  Copyright terms: Public domain W3C validator