| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrninxp2 | Structured version Visualization version GIF version | ||
| Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 8-Apr-2020.) |
| Ref | Expression |
|---|---|
| xrninxp2 | ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp2 38322 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} | |
| 2 | an21 644 | . . 3 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))) | |
| 3 | 2 | opabbii 5169 | . 2 ⊢ {〈𝑢, 𝑥〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥)} = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| 4 | 1, 3 | eqtri 2752 | 1 ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 class class class wbr 5102 {copab 5164 × cxp 5629 ⋉ cxrn 38141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 |
| This theorem is referenced by: inxpxrn 38354 |
| Copyright terms: Public domain | W3C validator |