MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasabl Structured version   Visualization version   GIF version

Theorem imasabl 19738
Description: The image structure of an abelian group is an abelian group (imasgrp 18935 analog). (Contributed by AV, 22-Feb-2025.)
Hypotheses
Ref Expression
imasabl.u (𝜑𝑈 = (𝐹s 𝑅))
imasabl.v (𝜑𝑉 = (Base‘𝑅))
imasabl.p (𝜑+ = (+g𝑅))
imasabl.f (𝜑𝐹:𝑉onto𝐵)
imasabl.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasabl.r (𝜑𝑅 ∈ Abel)
imasabl.z 0 = (0g𝑅)
Assertion
Ref Expression
imasabl (𝜑 → (𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   0 ,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   𝑅(𝑎,𝑏)

Proof of Theorem imasabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasabl.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasabl.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasabl.p . . . 4 (𝜑+ = (+g𝑅))
4 imasabl.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
5 imasabl.e . . . 4 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasabl.r . . . . 5 (𝜑𝑅 ∈ Abel)
76ablgrpd 19648 . . . 4 (𝜑𝑅 ∈ Grp)
8 imasabl.z . . . 4 0 = (0g𝑅)
91, 2, 3, 4, 5, 7, 8imasgrp 18935 . . 3 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
101, 2, 4, 6imasbas 17454 . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝑈))
1110eqcomd 2738 . . . . . . . . . 10 (𝜑 → (Base‘𝑈) = 𝐵)
1211eleq2d 2819 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (Base‘𝑈) ↔ 𝑥𝐵))
1311eleq2d 2819 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (Base‘𝑈) ↔ 𝑦𝐵))
1412, 13anbi12d 631 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) ↔ (𝑥𝐵𝑦𝐵)))
1514adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) ↔ (𝑥𝐵𝑦𝐵)))
16 foelcdmi 6950 . . . . . . . . . . . 12 ((𝐹:𝑉onto𝐵𝑥𝐵) → ∃𝑎𝑉 (𝐹𝑎) = 𝑥)
1716ex 413 . . . . . . . . . . 11 (𝐹:𝑉onto𝐵 → (𝑥𝐵 → ∃𝑎𝑉 (𝐹𝑎) = 𝑥))
18 foelcdmi 6950 . . . . . . . . . . . 12 ((𝐹:𝑉onto𝐵𝑦𝐵) → ∃𝑏𝑉 (𝐹𝑏) = 𝑦)
1918ex 413 . . . . . . . . . . 11 (𝐹:𝑉onto𝐵 → (𝑦𝐵 → ∃𝑏𝑉 (𝐹𝑏) = 𝑦))
2017, 19anim12d 609 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ((𝑥𝐵𝑦𝐵) → (∃𝑎𝑉 (𝐹𝑎) = 𝑥 ∧ ∃𝑏𝑉 (𝐹𝑏) = 𝑦)))
214, 20syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝑦𝐵) → (∃𝑎𝑉 (𝐹𝑎) = 𝑥 ∧ ∃𝑏𝑉 (𝐹𝑏) = 𝑦)))
2221adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((𝑥𝐵𝑦𝐵) → (∃𝑎𝑉 (𝐹𝑎) = 𝑥 ∧ ∃𝑏𝑉 (𝐹𝑏) = 𝑦)))
236ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑅 ∈ Abel)
242eleq2d 2819 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
2524biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
2625adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
2726imp 407 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → 𝑎 ∈ (Base‘𝑅))
2827adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑎 ∈ (Base‘𝑅))
292eleq2d 2819 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
3029biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
3130adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
3231adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
3332imp 407 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑏 ∈ (Base‘𝑅))
34 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
35 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (+g𝑅) = (+g𝑅)
3634, 35ablcom 19661 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Abel ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)𝑏) = (𝑏(+g𝑅)𝑎))
3723, 28, 33, 36syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (𝑎(+g𝑅)𝑏) = (𝑏(+g𝑅)𝑎))
3837fveq2d 6892 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑏(+g𝑅)𝑎)))
39 simplll 773 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝜑)
40 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → 𝑎𝑉)
4140adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑎𝑉)
42 simpr 485 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑏𝑉)
433eqcomd 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (+g𝑅) = + )
4443oveqd 7422 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎(+g𝑅)𝑏) = (𝑎 + 𝑏))
4544fveq2d 6892 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑎 + 𝑏)))
4643oveqd 7422 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑝(+g𝑅)𝑞) = (𝑝 + 𝑞))
4746fveq2d 6892 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹‘(𝑝(+g𝑅)𝑞)) = (𝐹‘(𝑝 + 𝑞)))
4845, 47eqeq12d 2748 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞)) ↔ (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
49483ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞)) ↔ (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
505, 49sylibrd 258 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞))))
51 eqid 2732 . . . . . . . . . . . . . . . . . 18 (+g𝑈) = (+g𝑈)
524, 50, 1, 2, 6, 35, 51imasaddval 17474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑉𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝐹‘(𝑎(+g𝑅)𝑏)))
5339, 41, 42, 52syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝐹‘(𝑎(+g𝑅)𝑏)))
544, 50, 1, 2, 6, 35, 51imasaddval 17474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝑉𝑎𝑉) → ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) = (𝐹‘(𝑏(+g𝑅)𝑎)))
5539, 42, 41, 54syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) = (𝐹‘(𝑏(+g𝑅)𝑎)))
5638, 53, 553eqtr4d 2782 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = ((𝐹𝑏)(+g𝑈)(𝐹𝑎)))
5756adantr 481 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ ((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥)) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = ((𝐹𝑏)(+g𝑈)(𝐹𝑎)))
58 oveq12 7414 . . . . . . . . . . . . . . . . 17 (((𝐹𝑎) = 𝑥 ∧ (𝐹𝑏) = 𝑦) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝑥(+g𝑈)𝑦))
5958ancoms 459 . . . . . . . . . . . . . . . 16 (((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝑥(+g𝑈)𝑦))
60 oveq12 7414 . . . . . . . . . . . . . . . 16 (((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥) → ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) = (𝑦(+g𝑈)𝑥))
6159, 60eqeq12d 2748 . . . . . . . . . . . . . . 15 (((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥) → (((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) ↔ (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
6261adantl 482 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ ((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥)) → (((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) ↔ (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
6357, 62mpbid 231 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ ((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥)) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))
6463exp32 421 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ((𝐹𝑏) = 𝑦 → ((𝐹𝑎) = 𝑥 → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))))
6564rexlimdva 3155 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → (∃𝑏𝑉 (𝐹𝑏) = 𝑦 → ((𝐹𝑎) = 𝑥 → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))))
6665com23 86 . . . . . . . . . 10 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → ((𝐹𝑎) = 𝑥 → (∃𝑏𝑉 (𝐹𝑏) = 𝑦 → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))))
6766rexlimdva 3155 . . . . . . . . 9 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (∃𝑎𝑉 (𝐹𝑎) = 𝑥 → (∃𝑏𝑉 (𝐹𝑏) = 𝑦 → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))))
6867impd 411 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((∃𝑎𝑉 (𝐹𝑎) = 𝑥 ∧ ∃𝑏𝑉 (𝐹𝑏) = 𝑦) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
6922, 68syld 47 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((𝑥𝐵𝑦𝐵) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
7015, 69sylbid 239 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
7170imp 407 . . . . 5 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈))) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))
7271ralrimivva 3200 . . . 4 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))
73 simpr 485 . . . 4 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
7472, 73jca 512 . . 3 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))))
759, 74mpdan 685 . 2 (𝜑 → (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))))
76 eqid 2732 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
7776, 51isabl2 19652 . . . 4 (𝑈 ∈ Abel ↔ (𝑈 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
7877anbi1i 624 . . 3 ((𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)) ↔ ((𝑈 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)) ∧ (𝐹0 ) = (0g𝑈)))
79 an21 642 . . 3 (((𝑈 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)) ∧ (𝐹0 ) = (0g𝑈)) ↔ (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))))
8078, 79bitri 274 . 2 ((𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)) ↔ (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))))
8175, 80sylibr 233 1 (𝜑 → (𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  ontowfo 6538  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  s cimas 17446  Grpcgrp 18815  Abelcabl 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-0g 17383  df-imas 17450  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-cmn 19644  df-abl 19645
This theorem is referenced by:  imasrng  46664
  Copyright terms: Public domain W3C validator