Step | Hyp | Ref
| Expression |
1 | | imasabl.u |
. . . 4
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
2 | | imasabl.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | imasabl.p |
. . . 4
⊢ (𝜑 → + =
(+g‘𝑅)) |
4 | | imasabl.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
5 | | imasabl.e |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
6 | | imasabl.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Abel) |
7 | 6 | ablgrpd 19648 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) |
8 | | imasabl.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
9 | 1, 2, 3, 4, 5, 7, 8 | imasgrp 18935 |
. . 3
⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈))) |
10 | 1, 2, 4, 6 | imasbas 17454 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
11 | 10 | eqcomd 2738 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑈) = 𝐵) |
12 | 11 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑈) ↔ 𝑥 ∈ 𝐵)) |
13 | 11 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (Base‘𝑈) ↔ 𝑦 ∈ 𝐵)) |
14 | 12, 13 | anbi12d 631 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ ((𝑥 ∈
(Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
16 | | foelcdmi 6950 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑉–onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = 𝑥) |
17 | 16 | ex 413 |
. . . . . . . . . . 11
⊢ (𝐹:𝑉–onto→𝐵 → (𝑥 ∈ 𝐵 → ∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = 𝑥)) |
18 | | foelcdmi 6950 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑉–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦) |
19 | 18 | ex 413 |
. . . . . . . . . . 11
⊢ (𝐹:𝑉–onto→𝐵 → (𝑦 ∈ 𝐵 → ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦)) |
20 | 17, 19 | anim12d 609 |
. . . . . . . . . 10
⊢ (𝐹:𝑉–onto→𝐵 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = 𝑥 ∧ ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦))) |
21 | 4, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = 𝑥 ∧ ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦))) |
22 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = 𝑥 ∧ ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦))) |
23 | 6 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝑅 ∈ Abel) |
24 | 2 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑎 ∈ 𝑉 ↔ 𝑎 ∈ (Base‘𝑅))) |
25 | 24 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑎 ∈ 𝑉 → 𝑎 ∈ (Base‘𝑅))) |
26 | 25 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ (𝑎 ∈ 𝑉 → 𝑎 ∈ (Base‘𝑅))) |
27 | 26 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ (Base‘𝑅)) |
28 | 27 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ (Base‘𝑅)) |
29 | 2 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑏 ∈ 𝑉 ↔ 𝑏 ∈ (Base‘𝑅))) |
30 | 29 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑏 ∈ 𝑉 → 𝑏 ∈ (Base‘𝑅))) |
31 | 30 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ (𝑏 ∈ 𝑉 → 𝑏 ∈ (Base‘𝑅))) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) → (𝑏 ∈ 𝑉 → 𝑏 ∈ (Base‘𝑅))) |
33 | 32 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ (Base‘𝑅)) |
34 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑅) =
(Base‘𝑅) |
35 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . 19
⊢
(+g‘𝑅) = (+g‘𝑅) |
36 | 34, 35 | ablcom 19661 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Abel ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑎(+g‘𝑅)𝑏) = (𝑏(+g‘𝑅)𝑎)) |
37 | 23, 28, 33, 36 | syl3anc 1371 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → (𝑎(+g‘𝑅)𝑏) = (𝑏(+g‘𝑅)𝑎)) |
38 | 37 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑏(+g‘𝑅)𝑎))) |
39 | | simplll 773 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝜑) |
40 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) |
41 | 40 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ 𝑉) |
42 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) |
43 | 3 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (+g‘𝑅) = + ) |
44 | 43 | oveqd 7422 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑎(+g‘𝑅)𝑏) = (𝑎 + 𝑏)) |
45 | 44 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑎 + 𝑏))) |
46 | 43 | oveqd 7422 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑝(+g‘𝑅)𝑞) = (𝑝 + 𝑞)) |
47 | 46 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐹‘(𝑝(+g‘𝑅)𝑞)) = (𝐹‘(𝑝 + 𝑞))) |
48 | 45, 47 | eqeq12d 2748 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)) ↔ (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
49 | 48 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)) ↔ (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
50 | 5, 49 | sylibrd 258 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)))) |
51 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
⊢
(+g‘𝑈) = (+g‘𝑈) |
52 | 4, 50, 1, 2, 6, 35,
51 | imasaddval 17474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = (𝐹‘(𝑎(+g‘𝑅)𝑏))) |
53 | 39, 41, 42, 52 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = (𝐹‘(𝑎(+g‘𝑅)𝑏))) |
54 | 4, 50, 1, 2, 6, 35,
51 | imasaddval 17474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉) → ((𝐹‘𝑏)(+g‘𝑈)(𝐹‘𝑎)) = (𝐹‘(𝑏(+g‘𝑅)𝑎))) |
55 | 39, 42, 41, 54 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑏)(+g‘𝑈)(𝐹‘𝑎)) = (𝐹‘(𝑏(+g‘𝑅)𝑎))) |
56 | 38, 53, 55 | 3eqtr4d 2782 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = ((𝐹‘𝑏)(+g‘𝑈)(𝐹‘𝑎))) |
57 | 56 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ ((𝐹‘𝑏) = 𝑦 ∧ (𝐹‘𝑎) = 𝑥)) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = ((𝐹‘𝑏)(+g‘𝑈)(𝐹‘𝑎))) |
58 | | oveq12 7414 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑎) = 𝑥 ∧ (𝐹‘𝑏) = 𝑦) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = (𝑥(+g‘𝑈)𝑦)) |
59 | 58 | ancoms 459 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑏) = 𝑦 ∧ (𝐹‘𝑎) = 𝑥) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = (𝑥(+g‘𝑈)𝑦)) |
60 | | oveq12 7414 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑏) = 𝑦 ∧ (𝐹‘𝑎) = 𝑥) → ((𝐹‘𝑏)(+g‘𝑈)(𝐹‘𝑎)) = (𝑦(+g‘𝑈)𝑥)) |
61 | 59, 60 | eqeq12d 2748 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑏) = 𝑦 ∧ (𝐹‘𝑎) = 𝑥) → (((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = ((𝐹‘𝑏)(+g‘𝑈)(𝐹‘𝑎)) ↔ (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥))) |
62 | 61 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ ((𝐹‘𝑏) = 𝑦 ∧ (𝐹‘𝑎) = 𝑥)) → (((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = ((𝐹‘𝑏)(+g‘𝑈)(𝐹‘𝑎)) ↔ (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥))) |
63 | 57, 62 | mpbid 231 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ ((𝐹‘𝑏) = 𝑦 ∧ (𝐹‘𝑎) = 𝑥)) → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)) |
64 | 63 | exp32 421 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑏) = 𝑦 → ((𝐹‘𝑎) = 𝑥 → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)))) |
65 | 64 | rexlimdva 3155 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦 → ((𝐹‘𝑎) = 𝑥 → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)))) |
66 | 65 | com23 86 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ 𝑎 ∈ 𝑉) → ((𝐹‘𝑎) = 𝑥 → (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦 → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)))) |
67 | 66 | rexlimdva 3155 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ (∃𝑎 ∈
𝑉 (𝐹‘𝑎) = 𝑥 → (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦 → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)))) |
68 | 67 | impd 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ ((∃𝑎 ∈
𝑉 (𝐹‘𝑎) = 𝑥 ∧ ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = 𝑦) → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥))) |
69 | 22, 68 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥))) |
70 | 15, 69 | sylbid 239 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ ((𝑥 ∈
(Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥))) |
71 | 70 | imp 407 |
. . . . 5
⊢ (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
∧ (𝑥 ∈
(Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈))) → (𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)) |
72 | 71 | ralrimivva 3200 |
. . . 4
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ ∀𝑥 ∈
(Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)) |
73 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ (𝑈 ∈ Grp ∧
(𝐹‘ 0 ) =
(0g‘𝑈))) |
74 | 72, 73 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))
→ (∀𝑥 ∈
(Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))) |
75 | 9, 74 | mpdan 685 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))) |
76 | | eqid 2732 |
. . . . 5
⊢
(Base‘𝑈) =
(Base‘𝑈) |
77 | 76, 51 | isabl2 19652 |
. . . 4
⊢ (𝑈 ∈ Abel ↔ (𝑈 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥))) |
78 | 77 | anbi1i 624 |
. . 3
⊢ ((𝑈 ∈ Abel ∧ (𝐹‘ 0 ) =
(0g‘𝑈))
↔ ((𝑈 ∈ Grp ∧
∀𝑥 ∈
(Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)) ∧ (𝐹‘ 0 ) =
(0g‘𝑈))) |
79 | | an21 642 |
. . 3
⊢ (((𝑈 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥)) ∧ (𝐹‘ 0 ) =
(0g‘𝑈))
↔ (∀𝑥 ∈
(Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))) |
80 | 78, 79 | bitri 274 |
. 2
⊢ ((𝑈 ∈ Abel ∧ (𝐹‘ 0 ) =
(0g‘𝑈))
↔ (∀𝑥 ∈
(Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g‘𝑈)𝑦) = (𝑦(+g‘𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) =
(0g‘𝑈)))) |
81 | 75, 80 | sylibr 233 |
1
⊢ (𝜑 → (𝑈 ∈ Abel ∧ (𝐹‘ 0 ) =
(0g‘𝑈))) |