Proof of Theorem fncnv
Step | Hyp | Ref
| Expression |
1 | | df-fn 6138 |
. 2
⊢ (◡(𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ (Fun ◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ dom ◡(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)) |
2 | | df-rn 5366 |
. . . 4
⊢ ran
(𝑅 ∩ (𝐴 × 𝐵)) = dom ◡(𝑅 ∩ (𝐴 × 𝐵)) |
3 | 2 | eqeq1i 2782 |
. . 3
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ dom ◡(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) |
4 | 3 | anbi2i 616 |
. 2
⊢ ((Fun
◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (Fun ◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ dom ◡(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)) |
5 | | rninxp 5827 |
. . . . 5
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝑅𝑦) |
6 | 5 | anbi1i 617 |
. . . 4
⊢ ((ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦) ↔ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
7 | | funcnv 6203 |
. . . . . 6
⊢ (Fun
◡(𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦) |
8 | | raleq 3329 |
. . . . . . 7
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦 ∈ 𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦)) |
9 | | biimt 352 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → (∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦 ↔ (𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦))) |
10 | | moanimv 2653 |
. . . . . . . . . 10
⊢
(∃*𝑥(𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) ↔ (𝑦 ∈ 𝐵 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
11 | | brinxp2 5426 |
. . . . . . . . . . . 12
⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) |
12 | | an21 634 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) ↔ (𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
13 | 11, 12 | bitri 267 |
. . . . . . . . . . 11
⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
14 | 13 | mobii 2562 |
. . . . . . . . . 10
⊢
(∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥(𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
15 | | df-rmo 3097 |
. . . . . . . . . . 11
⊢
(∃*𝑥 ∈
𝐴 𝑥𝑅𝑦 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
16 | 15 | imbi2i 328 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦) ↔ (𝑦 ∈ 𝐵 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
17 | 10, 14, 16 | 3bitr4i 295 |
. . . . . . . . 9
⊢
(∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
18 | 9, 17 | syl6rbbr 282 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
19 | 18 | ralbiia 3160 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦) |
20 | 8, 19 | syl6bb 279 |
. . . . . 6
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
21 | 7, 20 | syl5bb 275 |
. . . . 5
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (Fun ◡(𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
22 | 21 | pm5.32i 570 |
. . . 4
⊢ ((ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun ◡(𝑅 ∩ (𝐴 × 𝐵))) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
23 | | r19.26 3249 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 (∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦) ↔ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
24 | 6, 22, 23 | 3bitr4i 295 |
. . 3
⊢ ((ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun ◡(𝑅 ∩ (𝐴 × 𝐵))) ↔ ∀𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
25 | | ancom 454 |
. . 3
⊢ ((Fun
◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun ◡(𝑅 ∩ (𝐴 × 𝐵)))) |
26 | | reu5 3354 |
. . . 4
⊢
(∃!𝑥 ∈
𝐴 𝑥𝑅𝑦 ↔ (∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
27 | 26 | ralbii 3161 |
. . 3
⊢
(∀𝑦 ∈
𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
28 | 24, 25, 27 | 3bitr4i 295 |
. 2
⊢ ((Fun
◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦) |
29 | 1, 4, 28 | 3bitr2i 291 |
1
⊢ (◡(𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦) |