MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnv Structured version   Visualization version   GIF version

Theorem fncnv 6415
Description: Single-rootedness (see funcnv 6411) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 6346 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
2 df-rn 5553 . . . 4 ran (𝑅 ∩ (𝐴 × 𝐵)) = dom (𝑅 ∩ (𝐴 × 𝐵))
32eqeq1i 2829 . . 3 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)
43anbi2i 625 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
5 rninxp 6023 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦)
65anbi1i 626 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
7 funcnv 6411 . . . . . 6 (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦)
8 raleq 3396 . . . . . . 7 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦))
9 biimt 364 . . . . . . . . 9 (𝑦𝐵 → (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦)))
10 moanimv 2707 . . . . . . . . . 10 (∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
11 brinxp2 5616 . . . . . . . . . . . 12 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦))
12 an21 643 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1311, 12bitri 278 . . . . . . . . . . 11 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1413mobii 2632 . . . . . . . . . 10 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
15 df-rmo 3141 . . . . . . . . . . 11 (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ ∃*𝑥(𝑥𝐴𝑥𝑅𝑦))
1615imbi2i 339 . . . . . . . . . 10 ((𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
1710, 14, 163bitr4i 306 . . . . . . . . 9 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦))
189, 17syl6rbbr 293 . . . . . . . 8 (𝑦𝐵 → (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥𝐴 𝑥𝑅𝑦))
1918ralbiia 3159 . . . . . . 7 (∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦)
208, 19syl6bb 290 . . . . . 6 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
217, 20syl5bb 286 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
2221pm5.32i 578 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
23 r19.26 3165 . . . 4 (∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
246, 22, 233bitr4i 306 . . 3 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
25 ancom 464 . . 3 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))))
26 reu5 3413 . . . 4 (∃!𝑥𝐴 𝑥𝑅𝑦 ↔ (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2726ralbii 3160 . . 3 (∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2824, 25, 273bitr4i 306 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
291, 4, 283bitr2i 302 1 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  ∃*wmo 2622  wral 3133  wrex 3134  ∃!wreu 3135  ∃*wrmo 3136  cin 3918   class class class wbr 5052   × cxp 5540  ccnv 5541  dom cdm 5542  ran crn 5543  Fun wfun 6337   Fn wfn 6338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-fun 6345  df-fn 6346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator