Proof of Theorem fncnv
| Step | Hyp | Ref
| Expression |
| 1 | | df-fn 6564 |
. 2
⊢ (◡(𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ (Fun ◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ dom ◡(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)) |
| 2 | | df-rn 5696 |
. . . 4
⊢ ran
(𝑅 ∩ (𝐴 × 𝐵)) = dom ◡(𝑅 ∩ (𝐴 × 𝐵)) |
| 3 | 2 | eqeq1i 2742 |
. . 3
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ dom ◡(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) |
| 4 | 3 | anbi2i 623 |
. 2
⊢ ((Fun
◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (Fun ◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ dom ◡(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)) |
| 5 | | rninxp 6199 |
. . . . 5
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝑅𝑦) |
| 6 | 5 | anbi1i 624 |
. . . 4
⊢ ((ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦) ↔ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 7 | | funcnv 6635 |
. . . . . 6
⊢ (Fun
◡(𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦) |
| 8 | | raleq 3323 |
. . . . . . 7
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦 ∈ 𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦)) |
| 9 | | moanimv 2619 |
. . . . . . . . . 10
⊢
(∃*𝑥(𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) ↔ (𝑦 ∈ 𝐵 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
| 10 | | brinxp2 5763 |
. . . . . . . . . . . 12
⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) |
| 11 | | an21 644 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) ↔ (𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
| 12 | 10, 11 | bitri 275 |
. . . . . . . . . . 11
⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
| 13 | 12 | mobii 2548 |
. . . . . . . . . 10
⊢
(∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥(𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
| 14 | | df-rmo 3380 |
. . . . . . . . . . 11
⊢
(∃*𝑥 ∈
𝐴 𝑥𝑅𝑦 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
| 15 | 14 | imbi2i 336 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦) ↔ (𝑦 ∈ 𝐵 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) |
| 16 | 9, 13, 15 | 3bitr4i 303 |
. . . . . . . . 9
⊢
(∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 17 | | biimt 360 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → (∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦 ↔ (𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦))) |
| 18 | 16, 17 | bitr4id 290 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 19 | 18 | ralbiia 3091 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦) |
| 20 | 8, 19 | bitrdi 287 |
. . . . . 6
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 21 | 7, 20 | bitrid 283 |
. . . . 5
⊢ (ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (Fun ◡(𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 22 | 21 | pm5.32i 574 |
. . . 4
⊢ ((ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun ◡(𝑅 ∩ (𝐴 × 𝐵))) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 23 | | r19.26 3111 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 (∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦) ↔ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 24 | 6, 22, 23 | 3bitr4i 303 |
. . 3
⊢ ((ran
(𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun ◡(𝑅 ∩ (𝐴 × 𝐵))) ↔ ∀𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 25 | | ancom 460 |
. . 3
⊢ ((Fun
◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun ◡(𝑅 ∩ (𝐴 × 𝐵)))) |
| 26 | | reu5 3382 |
. . . 4
⊢
(∃!𝑥 ∈
𝐴 𝑥𝑅𝑦 ↔ (∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 27 | 26 | ralbii 3093 |
. . 3
⊢
(∀𝑦 ∈
𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥 ∈ 𝐴 𝑥𝑅𝑦)) |
| 28 | 24, 25, 27 | 3bitr4i 303 |
. 2
⊢ ((Fun
◡(𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦) |
| 29 | 1, 4, 28 | 3bitr2i 299 |
1
⊢ (◡(𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦) |