Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexuz2 | Structured version Visualization version GIF version |
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
rexuz2 | ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12323 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | df-3an 1090 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) | |
3 | 1, 2 | bitri 278 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) |
4 | 3 | anbi1i 627 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑)) |
5 | anass 472 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
6 | an21 644 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) | |
7 | 5, 6 | bitri 278 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
8 | 4, 7 | bitri 278 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
9 | 8 | rexbii2 3158 | . 2 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
10 | r19.42v 3253 | . 2 ⊢ (∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
11 | 9, 10 | bitri 278 | 1 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1088 ∈ wcel 2113 ∃wrex 3054 class class class wbr 5027 ‘cfv 6333 ≤ cle 10747 ℤcz 12055 ℤ≥cuz 12317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-cnex 10664 ax-resscn 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-fv 6341 df-ov 7167 df-neg 10944 df-z 12056 df-uz 12318 |
This theorem is referenced by: 2rexuz 12375 |
Copyright terms: Public domain | W3C validator |