| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexuz2 | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
| Ref | Expression |
|---|---|
| rexuz2 | ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 12799 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
| 2 | df-3an 1088 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) | |
| 3 | 1, 2 | bitri 275 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑)) |
| 5 | anass 468 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
| 6 | an21 644 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
| 8 | 4, 7 | bitri 275 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
| 9 | 8 | rexbii2 3072 | . 2 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| 10 | r19.42v 3169 | . 2 ⊢ (∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
| 11 | 9, 10 | bitri 275 | 1 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 ‘cfv 6511 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: 2rexuz 12859 |
| Copyright terms: Public domain | W3C validator |