MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuz2 Structured version   Visualization version   GIF version

Theorem rexuz2 12939
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
rexuz2 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem rexuz2
StepHypRef Expression
1 eluz2 12882 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛))
2 df-3an 1088 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛))
31, 2bitri 275 . . . . 5 (𝑛 ∈ (ℤ𝑀) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛))
43anbi1i 624 . . . 4 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑))
5 anass 468 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀𝑛𝜑)))
6 an21 644 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀𝑛𝜑)) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
75, 6bitri 275 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
84, 7bitri 275 . . 3 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
98rexbii2 3088 . 2 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑)))
10 r19.42v 3189 . 2 (∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑)) ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
119, 10bitri 275 1 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2106  wrex 3068   class class class wbr 5148  cfv 6563  cle 11294  cz 12611  cuz 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-neg 11493  df-z 12612  df-uz 12877
This theorem is referenced by:  2rexuz  12940
  Copyright terms: Public domain W3C validator