![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexuz2 | Structured version Visualization version GIF version |
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
rexuz2 | ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12859 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | df-3an 1087 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) | |
3 | 1, 2 | bitri 275 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) |
4 | 3 | anbi1i 623 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑)) |
5 | anass 468 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
6 | an21 643 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) | |
7 | 5, 6 | bitri 275 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
8 | 4, 7 | bitri 275 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
9 | 8 | rexbii2 3087 | . 2 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
10 | r19.42v 3187 | . 2 ⊢ (∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
11 | 9, 10 | bitri 275 | 1 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ∃wrex 3067 class class class wbr 5148 ‘cfv 6548 ≤ cle 11280 ℤcz 12589 ℤ≥cuz 12853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-cnex 11195 ax-resscn 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-neg 11478 df-z 12590 df-uz 12854 |
This theorem is referenced by: 2rexuz 12915 |
Copyright terms: Public domain | W3C validator |