MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuz2 Structured version   Visualization version   GIF version

Theorem rexuz2 12964
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
rexuz2 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem rexuz2
StepHypRef Expression
1 eluz2 12909 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛))
2 df-3an 1089 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛))
31, 2bitri 275 . . . . 5 (𝑛 ∈ (ℤ𝑀) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛))
43anbi1i 623 . . . 4 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑))
5 anass 468 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀𝑛𝜑)))
6 an21 643 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀𝑛𝜑)) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
75, 6bitri 275 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
84, 7bitri 275 . . 3 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
98rexbii2 3096 . 2 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑)))
10 r19.42v 3197 . 2 (∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑)) ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
119, 10bitri 275 1 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  cle 11325  cz 12639  cuz 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-neg 11523  df-z 12640  df-uz 12904
This theorem is referenced by:  2rexuz  12965
  Copyright terms: Public domain W3C validator