Proof of Theorem axrep5
Step | Hyp | Ref
| Expression |
1 | | 19.37v 1996 |
. . . . 5
⊢
(∃𝑧(𝑥 ∈ 𝑤 → ∀𝑦(𝜑 → 𝑦 = 𝑧)) ↔ (𝑥 ∈ 𝑤 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧))) |
2 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑤 ∧ 𝜑) → 𝑦 = 𝑧) ↔ (𝑥 ∈ 𝑤 → (𝜑 → 𝑦 = 𝑧))) |
3 | 2 | albii 1823 |
. . . . . . 7
⊢
(∀𝑦((𝑥 ∈ 𝑤 ∧ 𝜑) → 𝑦 = 𝑧) ↔ ∀𝑦(𝑥 ∈ 𝑤 → (𝜑 → 𝑦 = 𝑧))) |
4 | | 19.21v 1943 |
. . . . . . 7
⊢
(∀𝑦(𝑥 ∈ 𝑤 → (𝜑 → 𝑦 = 𝑧)) ↔ (𝑥 ∈ 𝑤 → ∀𝑦(𝜑 → 𝑦 = 𝑧))) |
5 | 3, 4 | bitr2i 275 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑤 → ∀𝑦(𝜑 → 𝑦 = 𝑧)) ↔ ∀𝑦((𝑥 ∈ 𝑤 ∧ 𝜑) → 𝑦 = 𝑧)) |
6 | 5 | exbii 1851 |
. . . . 5
⊢
(∃𝑧(𝑥 ∈ 𝑤 → ∀𝑦(𝜑 → 𝑦 = 𝑧)) ↔ ∃𝑧∀𝑦((𝑥 ∈ 𝑤 ∧ 𝜑) → 𝑦 = 𝑧)) |
7 | 1, 6 | bitr3i 276 |
. . . 4
⊢ ((𝑥 ∈ 𝑤 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) ↔ ∃𝑧∀𝑦((𝑥 ∈ 𝑤 ∧ 𝜑) → 𝑦 = 𝑧)) |
8 | 7 | albii 1823 |
. . 3
⊢
(∀𝑥(𝑥 ∈ 𝑤 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) ↔ ∀𝑥∃𝑧∀𝑦((𝑥 ∈ 𝑤 ∧ 𝜑) → 𝑦 = 𝑧)) |
9 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑧 𝑥 ∈ 𝑤 |
10 | | axrep5.1 |
. . . . 5
⊢
Ⅎ𝑧𝜑 |
11 | 9, 10 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝑤 ∧ 𝜑) |
12 | 11 | axrep4 5210 |
. . 3
⊢
(∀𝑥∃𝑧∀𝑦((𝑥 ∈ 𝑤 ∧ 𝜑) → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑤 ∧ 𝜑)))) |
13 | 8, 12 | sylbi 216 |
. 2
⊢
(∀𝑥(𝑥 ∈ 𝑤 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑤 ∧ 𝜑)))) |
14 | | anabs5 659 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑤 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑤 ∧ 𝜑)) |
15 | 14 | exbii 1851 |
. . . . 5
⊢
(∃𝑥(𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑤 ∧ 𝜑)) ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑)) |
16 | 15 | bibi2i 337 |
. . . 4
⊢ ((𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑤 ∧ 𝜑))) ↔ (𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
17 | 16 | albii 1823 |
. . 3
⊢
(∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑤 ∧ 𝜑))) ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
18 | 17 | exbii 1851 |
. 2
⊢
(∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑤 ∧ 𝜑))) ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
19 | 13, 18 | sylib 217 |
1
⊢
(∀𝑥(𝑥 ∈ 𝑤 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |