Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elinintrab Structured version   Visualization version   GIF version

Theorem elinintrab 41074
Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.)
Assertion
Ref Expression
elinintrab (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤,𝐴   𝑤,𝐵,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥,𝑤)

Proof of Theorem elinintrab
StepHypRef Expression
1 vex 3426 . . . 4 𝑥 ∈ V
21inex2 5237 . . 3 (𝐵𝑥) ∈ V
3 inss1 4159 . . 3 (𝐵𝑥) ⊆ 𝐵
42, 3elmapintrab 41073 . 2 (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)))))
5 elin 3899 . . . . . . . 8 (𝐴 ∈ (𝐵𝑥) ↔ (𝐴𝐵𝐴𝑥))
65imbi2i 335 . . . . . . 7 ((𝜑𝐴 ∈ (𝐵𝑥)) ↔ (𝜑 → (𝐴𝐵𝐴𝑥)))
7 jcab 517 . . . . . . 7 ((𝜑 → (𝐴𝐵𝐴𝑥)) ↔ ((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
86, 7bitri 274 . . . . . 6 ((𝜑𝐴 ∈ (𝐵𝑥)) ↔ ((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
98albii 1823 . . . . 5 (∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)) ↔ ∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
10 19.26 1874 . . . . . 6 (∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)) ↔ (∀𝑥(𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
11 19.23v 1946 . . . . . . 7 (∀𝑥(𝜑𝐴𝐵) ↔ (∃𝑥𝜑𝐴𝐵))
1211anbi1i 623 . . . . . 6 ((∀𝑥(𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1310, 12bitri 274 . . . . 5 (∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
149, 13bitri 274 . . . 4 (∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1514anbi2i 622 . . 3 (((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
16 anabs5 659 . . 3 (((∃𝑥𝜑𝐴𝐵) ∧ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1715, 16bitri 274 . 2 (((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
184, 17bitrdi 286 1 (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  {crab 3067  cin 3882  𝒫 cpw 4530   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-int 4877
This theorem is referenced by:  inintabss  41075  inintabd  41076
  Copyright terms: Public domain W3C validator