Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elinintrab Structured version   Visualization version   GIF version

Theorem elinintrab 38719
Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.)
Assertion
Ref Expression
elinintrab (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤,𝐴   𝑤,𝐵,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥,𝑤)

Proof of Theorem elinintrab
StepHypRef Expression
1 vex 3417 . . . 4 𝑥 ∈ V
21inex2 5027 . . 3 (𝐵𝑥) ∈ V
3 inss1 4059 . . 3 (𝐵𝑥) ⊆ 𝐵
42, 3elmapintrab 38718 . 2 (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)))))
5 elin 4025 . . . . . . . 8 (𝐴 ∈ (𝐵𝑥) ↔ (𝐴𝐵𝐴𝑥))
65imbi2i 328 . . . . . . 7 ((𝜑𝐴 ∈ (𝐵𝑥)) ↔ (𝜑 → (𝐴𝐵𝐴𝑥)))
7 jcab 513 . . . . . . 7 ((𝜑 → (𝐴𝐵𝐴𝑥)) ↔ ((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
86, 7bitri 267 . . . . . 6 ((𝜑𝐴 ∈ (𝐵𝑥)) ↔ ((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
98albii 1918 . . . . 5 (∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)) ↔ ∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
10 19.26 1972 . . . . . 6 (∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)) ↔ (∀𝑥(𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
11 19.23v 2041 . . . . . . 7 (∀𝑥(𝜑𝐴𝐵) ↔ (∃𝑥𝜑𝐴𝐵))
1211anbi1i 617 . . . . . 6 ((∀𝑥(𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1310, 12bitri 267 . . . . 5 (∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
149, 13bitri 267 . . . 4 (∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1514anbi2i 616 . . 3 (((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
16 anabs5 653 . . 3 (((∃𝑥𝜑𝐴𝐵) ∧ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1715, 16bitri 267 . 2 (((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
184, 17syl6bb 279 1 (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1654   = wceq 1656  wex 1878  wcel 2164  {crab 3121  cin 3797  𝒫 cpw 4380   cint 4699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803  ax-sep 5007
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rab 3126  df-v 3416  df-in 3805  df-ss 3812  df-pw 4382  df-int 4700
This theorem is referenced by:  inintabss  38720  inintabd  38721
  Copyright terms: Public domain W3C validator