HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopadd Structured version   Visualization version   GIF version

Theorem leopadd 29680
Description: The sum of two positive operators is positive. Exercise 1(i) of [Retherford] p. 49. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopadd (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ ( 0hopop 𝑇 ∧ 0hopop 𝑈)) → 0hopop (𝑇 +op 𝑈))

Proof of Theorem leopadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3114 . . . 4 (∀𝑥 ∈ ℋ (0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) ↔ (∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈𝑥) ·ih 𝑥)))
2 hmopre 29471 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
3 hmopre 29471 . . . . . . . 8 ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑈𝑥) ·ih 𝑥) ∈ ℝ)
4 addge0 10922 . . . . . . . . 9 (((((𝑇𝑥) ·ih 𝑥) ∈ ℝ ∧ ((𝑈𝑥) ·ih 𝑥) ∈ ℝ) ∧ (0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥))) → 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
54ex 405 . . . . . . . 8 ((((𝑇𝑥) ·ih 𝑥) ∈ ℝ ∧ ((𝑈𝑥) ·ih 𝑥) ∈ ℝ) → ((0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥))))
62, 3, 5syl2an 586 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) ∧ (𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ)) → ((0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥))))
76anandirs 666 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥))))
8 hmopf 29422 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
9 hmopf 29422 . . . . . . . . 9 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
108, 9anim12i 603 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ))
11 hosval 29288 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
1211oveq1d 6985 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑥))
13123expa 1098 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑥))
14 ffvelrn 6668 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
1514adantlr 702 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
16 ffvelrn 6668 . . . . . . . . . . 11 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
1716adantll 701 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
18 simpr 477 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
19 ax-his2 28629 . . . . . . . . . 10 (((𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
2015, 17, 18, 19syl3anc 1351 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
2113, 20eqtrd 2808 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
2210, 21sylan 572 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
2322breq2d 4935 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥))))
247, 23sylibrd 251 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
2524ralimdva 3121 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (∀𝑥 ∈ ℋ (0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
261, 25syl5bir 235 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ((∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
27 leoppos 29674 . . . 4 (𝑇 ∈ HrmOp → ( 0hopop 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥)))
28 leoppos 29674 . . . 4 (𝑈 ∈ HrmOp → ( 0hopop 𝑈 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈𝑥) ·ih 𝑥)))
2927, 28bi2anan9 626 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (( 0hopop 𝑇 ∧ 0hopop 𝑈) ↔ (∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈𝑥) ·ih 𝑥))))
30 hmops 29568 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)
31 leoppos 29674 . . . 4 ((𝑇 +op 𝑈) ∈ HrmOp → ( 0hopop (𝑇 +op 𝑈) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
3230, 31syl 17 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ( 0hopop (𝑇 +op 𝑈) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
3326, 29, 323imtr4d 286 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (( 0hopop 𝑇 ∧ 0hopop 𝑈) → 0hopop (𝑇 +op 𝑈)))
3433imp 398 1 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ ( 0hopop 𝑇 ∧ 0hopop 𝑈)) → 0hopop (𝑇 +op 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wral 3082   class class class wbr 4923  wf 6178  cfv 6182  (class class class)co 6970  cr 10326  0cc0 10327   + caddc 10330  cle 10467  chba 28465   + cva 28466   ·ih csp 28468   +op chos 28484   0hop ch0o 28489  HrmOpcho 28496  op cleo 28504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cc 9647  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407  ax-hilex 28545  ax-hfvadd 28546  ax-hvcom 28547  ax-hvass 28548  ax-hv0cl 28549  ax-hvaddid 28550  ax-hfvmul 28551  ax-hvmulid 28552  ax-hvmulass 28553  ax-hvdistr1 28554  ax-hvdistr2 28555  ax-hvmul0 28556  ax-hfi 28625  ax-his1 28628  ax-his2 28629  ax-his3 28630  ax-his4 28631  ax-hcompl 28748
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-omul 7902  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-acn 9157  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-fl 12970  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-clim 14696  df-rlim 14697  df-sum 14894  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-fbas 20234  df-fg 20235  df-cnfld 20238  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cld 21321  df-ntr 21322  df-cls 21323  df-nei 21400  df-cn 21529  df-cnp 21530  df-lm 21531  df-haus 21617  df-tx 21864  df-hmeo 22057  df-fil 22148  df-fm 22240  df-flim 22241  df-flf 22242  df-xms 22623  df-ms 22624  df-tms 22625  df-cfil 23551  df-cau 23552  df-cmet 23553  df-grpo 28037  df-gid 28038  df-ginv 28039  df-gdiv 28040  df-ablo 28089  df-vc 28103  df-nv 28136  df-va 28139  df-ba 28140  df-sm 28141  df-0v 28142  df-vs 28143  df-nmcv 28144  df-ims 28145  df-dip 28245  df-ssp 28266  df-ph 28357  df-cbn 28408  df-hnorm 28514  df-hba 28515  df-hvsub 28517  df-hlim 28518  df-hcau 28519  df-sh 28753  df-ch 28767  df-oc 28798  df-ch0 28799  df-shs 28856  df-pjh 28943  df-hosum 29278  df-homul 29279  df-hodif 29280  df-h0op 29296  df-hmop 29392  df-leop 29400
This theorem is referenced by:  opsqrlem6  29693
  Copyright terms: Public domain W3C validator