Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > leopadd | Structured version Visualization version GIF version |
Description: The sum of two positive operators is positive. Exercise 1(i) of [Retherford] p. 49. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leopadd | ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ ( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈)) → 0hop ≤op (𝑇 +op 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 3092 | . . . 4 ⊢ (∀𝑥 ∈ ℋ (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) ↔ (∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥))) | |
2 | hmopre 30004 | . . . . . . . 8 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈ ℝ) | |
3 | hmopre 30004 | . . . . . . . 8 ⊢ ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑈‘𝑥) ·ih 𝑥) ∈ ℝ) | |
4 | addge0 11321 | . . . . . . . . 9 ⊢ (((((𝑇‘𝑥) ·ih 𝑥) ∈ ℝ ∧ ((𝑈‘𝑥) ·ih 𝑥) ∈ ℝ) ∧ (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥))) → 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) | |
5 | 4 | ex 416 | . . . . . . . 8 ⊢ ((((𝑇‘𝑥) ·ih 𝑥) ∈ ℝ ∧ ((𝑈‘𝑥) ·ih 𝑥) ∈ ℝ) → ((0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥)))) |
6 | 2, 3, 5 | syl2an 599 | . . . . . . 7 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) ∧ (𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ)) → ((0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥)))) |
7 | 6 | anandirs 679 | . . . . . 6 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥)))) |
8 | hmopf 29955 | . . . . . . . . 9 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
9 | hmopf 29955 | . . . . . . . . 9 ⊢ (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ) | |
10 | 8, 9 | anim12i 616 | . . . . . . . 8 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) |
11 | hosval 29821 | . . . . . . . . . . 11 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇‘𝑥) +ℎ (𝑈‘𝑥))) | |
12 | 11 | oveq1d 7228 | . . . . . . . . . 10 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) +ℎ (𝑈‘𝑥)) ·ih 𝑥)) |
13 | 12 | 3expa 1120 | . . . . . . . . 9 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) +ℎ (𝑈‘𝑥)) ·ih 𝑥)) |
14 | ffvelrn 6902 | . . . . . . . . . . 11 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
15 | 14 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
16 | ffvelrn 6902 | . . . . . . . . . . 11 ⊢ ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈‘𝑥) ∈ ℋ) | |
17 | 16 | adantll 714 | . . . . . . . . . 10 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈‘𝑥) ∈ ℋ) |
18 | simpr 488 | . . . . . . . . . 10 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ) | |
19 | ax-his2 29164 | . . . . . . . . . 10 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ (𝑈‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) +ℎ (𝑈‘𝑥)) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) | |
20 | 15, 17, 18, 19 | syl3anc 1373 | . . . . . . . . 9 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) +ℎ (𝑈‘𝑥)) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) |
21 | 13, 20 | eqtrd 2777 | . . . . . . . 8 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) |
22 | 10, 21 | sylan 583 | . . . . . . 7 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) |
23 | 22 | breq2d 5065 | . . . . . 6 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥)))) |
24 | 7, 23 | sylibrd 262 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) |
25 | 24 | ralimdva 3100 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (∀𝑥 ∈ ℋ (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) |
26 | 1, 25 | syl5bir 246 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ((∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) |
27 | leoppos 30207 | . . . 4 ⊢ (𝑇 ∈ HrmOp → ( 0hop ≤op 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥))) | |
28 | leoppos 30207 | . . . 4 ⊢ (𝑈 ∈ HrmOp → ( 0hop ≤op 𝑈 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥))) | |
29 | 27, 28 | bi2anan9 639 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈) ↔ (∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)))) |
30 | hmops 30101 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp) | |
31 | leoppos 30207 | . . . 4 ⊢ ((𝑇 +op 𝑈) ∈ HrmOp → ( 0hop ≤op (𝑇 +op 𝑈) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) | |
32 | 30, 31 | syl 17 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ( 0hop ≤op (𝑇 +op 𝑈) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) |
33 | 26, 29, 32 | 3imtr4d 297 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈) → 0hop ≤op (𝑇 +op 𝑈))) |
34 | 33 | imp 410 | 1 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ ( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈)) → 0hop ≤op (𝑇 +op 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 class class class wbr 5053 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 0cc0 10729 + caddc 10732 ≤ cle 10868 ℋchba 29000 +ℎ cva 29001 ·ih csp 29003 +op chos 29019 0hop ch0o 29024 HrmOpcho 29031 ≤op cleo 29039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cc 10049 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 ax-hilex 29080 ax-hfvadd 29081 ax-hvcom 29082 ax-hvass 29083 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 ax-hvmulass 29088 ax-hvdistr1 29089 ax-hvdistr2 29090 ax-hvmul0 29091 ax-hfi 29160 ax-his1 29163 ax-his2 29164 ax-his3 29165 ax-his4 29166 ax-hcompl 29283 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-omul 8207 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-acn 9558 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-rlim 15050 df-sum 15250 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-cn 22124 df-cnp 22125 df-lm 22126 df-haus 22212 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-xms 23218 df-ms 23219 df-tms 23220 df-cfil 24152 df-cau 24153 df-cmet 24154 df-grpo 28574 df-gid 28575 df-ginv 28576 df-gdiv 28577 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-vs 28680 df-nmcv 28681 df-ims 28682 df-dip 28782 df-ssp 28803 df-ph 28894 df-cbn 28944 df-hnorm 29049 df-hba 29050 df-hvsub 29052 df-hlim 29053 df-hcau 29054 df-sh 29288 df-ch 29302 df-oc 29333 df-ch0 29334 df-shs 29389 df-pjh 29476 df-hosum 29811 df-homul 29812 df-hodif 29813 df-h0op 29829 df-hmop 29925 df-leop 29933 |
This theorem is referenced by: opsqrlem6 30226 |
Copyright terms: Public domain | W3C validator |