| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > leopadd | Structured version Visualization version GIF version | ||
| Description: The sum of two positive operators is positive. Exercise 1(i) of [Retherford] p. 49. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| leopadd | ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ ( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈)) → 0hop ≤op (𝑇 +op 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 3091 | . . . 4 ⊢ (∀𝑥 ∈ ℋ (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) ↔ (∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥))) | |
| 2 | hmopre 31852 | . . . . . . . 8 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈ ℝ) | |
| 3 | hmopre 31852 | . . . . . . . 8 ⊢ ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑈‘𝑥) ·ih 𝑥) ∈ ℝ) | |
| 4 | addge0 11667 | . . . . . . . . 9 ⊢ (((((𝑇‘𝑥) ·ih 𝑥) ∈ ℝ ∧ ((𝑈‘𝑥) ·ih 𝑥) ∈ ℝ) ∧ (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥))) → 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) | |
| 5 | 4 | ex 412 | . . . . . . . 8 ⊢ ((((𝑇‘𝑥) ·ih 𝑥) ∈ ℝ ∧ ((𝑈‘𝑥) ·ih 𝑥) ∈ ℝ) → ((0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥)))) |
| 6 | 2, 3, 5 | syl2an 596 | . . . . . . 7 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) ∧ (𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ)) → ((0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥)))) |
| 7 | 6 | anandirs 679 | . . . . . 6 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥)))) |
| 8 | hmopf 31803 | . . . . . . . . 9 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
| 9 | hmopf 31803 | . . . . . . . . 9 ⊢ (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ) | |
| 10 | 8, 9 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) |
| 11 | hosval 31669 | . . . . . . . . . . 11 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇‘𝑥) +ℎ (𝑈‘𝑥))) | |
| 12 | 11 | oveq1d 7402 | . . . . . . . . . 10 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) +ℎ (𝑈‘𝑥)) ·ih 𝑥)) |
| 13 | 12 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) +ℎ (𝑈‘𝑥)) ·ih 𝑥)) |
| 14 | ffvelcdm 7053 | . . . . . . . . . . 11 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 15 | 14 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
| 16 | ffvelcdm 7053 | . . . . . . . . . . 11 ⊢ ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈‘𝑥) ∈ ℋ) | |
| 17 | 16 | adantll 714 | . . . . . . . . . 10 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈‘𝑥) ∈ ℋ) |
| 18 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ) | |
| 19 | ax-his2 31012 | . . . . . . . . . 10 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ (𝑈‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) +ℎ (𝑈‘𝑥)) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) | |
| 20 | 15, 17, 18, 19 | syl3anc 1373 | . . . . . . . . 9 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) +ℎ (𝑈‘𝑥)) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) |
| 21 | 13, 20 | eqtrd 2764 | . . . . . . . 8 ⊢ (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) |
| 22 | 10, 21 | sylan 580 | . . . . . . 7 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥))) |
| 23 | 22 | breq2d 5119 | . . . . . 6 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑇‘𝑥) ·ih 𝑥) + ((𝑈‘𝑥) ·ih 𝑥)))) |
| 24 | 7, 23 | sylibrd 259 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) |
| 25 | 24 | ralimdva 3145 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (∀𝑥 ∈ ℋ (0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) |
| 26 | 1, 25 | biimtrrid 243 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ((∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) |
| 27 | leoppos 32055 | . . . 4 ⊢ (𝑇 ∈ HrmOp → ( 0hop ≤op 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥))) | |
| 28 | leoppos 32055 | . . . 4 ⊢ (𝑈 ∈ HrmOp → ( 0hop ≤op 𝑈 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥))) | |
| 29 | 27, 28 | bi2anan9 638 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈) ↔ (∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈‘𝑥) ·ih 𝑥)))) |
| 30 | hmops 31949 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp) | |
| 31 | leoppos 32055 | . . . 4 ⊢ ((𝑇 +op 𝑈) ∈ HrmOp → ( 0hop ≤op (𝑇 +op 𝑈) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) | |
| 32 | 30, 31 | syl 17 | . . 3 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ( 0hop ≤op (𝑇 +op 𝑈) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥))) |
| 33 | 26, 29, 32 | 3imtr4d 294 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈) → 0hop ≤op (𝑇 +op 𝑈))) |
| 34 | 33 | imp 406 | 1 ⊢ (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ ( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈)) → 0hop ≤op (𝑇 +op 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 + caddc 11071 ≤ cle 11209 ℋchba 30848 +ℎ cva 30849 ·ih csp 30851 +op chos 30867 0hop ch0o 30872 HrmOpcho 30879 ≤op cleo 30887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cn 23114 df-cnp 23115 df-lm 23116 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cfil 25155 df-cau 25156 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-dip 30630 df-ssp 30651 df-ph 30742 df-cbn 30792 df-hnorm 30897 df-hba 30898 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 df-shs 31237 df-pjh 31324 df-hosum 31659 df-homul 31660 df-hodif 31661 df-h0op 31677 df-hmop 31773 df-leop 31781 |
| This theorem is referenced by: opsqrlem6 32074 |
| Copyright terms: Public domain | W3C validator |