HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopadd Structured version   Visualization version   GIF version

Theorem leopadd 32061
Description: The sum of two positive operators is positive. Exercise 1(i) of [Retherford] p. 49. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopadd (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ ( 0hopop 𝑇 ∧ 0hopop 𝑈)) → 0hopop (𝑇 +op 𝑈))

Proof of Theorem leopadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3091 . . . 4 (∀𝑥 ∈ ℋ (0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) ↔ (∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈𝑥) ·ih 𝑥)))
2 hmopre 31852 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
3 hmopre 31852 . . . . . . . 8 ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑈𝑥) ·ih 𝑥) ∈ ℝ)
4 addge0 11667 . . . . . . . . 9 (((((𝑇𝑥) ·ih 𝑥) ∈ ℝ ∧ ((𝑈𝑥) ·ih 𝑥) ∈ ℝ) ∧ (0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥))) → 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
54ex 412 . . . . . . . 8 ((((𝑇𝑥) ·ih 𝑥) ∈ ℝ ∧ ((𝑈𝑥) ·ih 𝑥) ∈ ℝ) → ((0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥))))
62, 3, 5syl2an 596 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) ∧ (𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ)) → ((0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥))))
76anandirs 679 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥))))
8 hmopf 31803 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
9 hmopf 31803 . . . . . . . . 9 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
108, 9anim12i 613 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ))
11 hosval 31669 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
1211oveq1d 7402 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑥))
13123expa 1118 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑥))
14 ffvelcdm 7053 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
1514adantlr 715 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
16 ffvelcdm 7053 . . . . . . . . . . 11 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
1716adantll 714 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
18 simpr 484 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
19 ax-his2 31012 . . . . . . . . . 10 (((𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
2015, 17, 18, 19syl3anc 1373 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
2113, 20eqtrd 2764 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
2210, 21sylan 580 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥)))
2322breq2d 5119 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑇𝑥) ·ih 𝑥) + ((𝑈𝑥) ·ih 𝑥))))
247, 23sylibrd 259 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
2524ralimdva 3145 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (∀𝑥 ∈ ℋ (0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
261, 25biimtrrid 243 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ((∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
27 leoppos 32055 . . . 4 (𝑇 ∈ HrmOp → ( 0hopop 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥)))
28 leoppos 32055 . . . 4 (𝑈 ∈ HrmOp → ( 0hopop 𝑈 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈𝑥) ·ih 𝑥)))
2927, 28bi2anan9 638 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (( 0hopop 𝑇 ∧ 0hopop 𝑈) ↔ (∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥) ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑈𝑥) ·ih 𝑥))))
30 hmops 31949 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)
31 leoppos 32055 . . . 4 ((𝑇 +op 𝑈) ∈ HrmOp → ( 0hopop (𝑇 +op 𝑈) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
3230, 31syl 17 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ( 0hopop (𝑇 +op 𝑈) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑥)))
3326, 29, 323imtr4d 294 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (( 0hopop 𝑇 ∧ 0hopop 𝑈) → 0hopop (𝑇 +op 𝑈)))
3433imp 406 1 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ ( 0hopop 𝑇 ∧ 0hopop 𝑈)) → 0hopop (𝑇 +op 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  cle 11209  chba 30848   + cva 30849   ·ih csp 30851   +op chos 30867   0hop ch0o 30872  HrmOpcho 30879  op cleo 30887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ssp 30651  df-ph 30742  df-cbn 30792  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181  df-ch0 31182  df-shs 31237  df-pjh 31324  df-hosum 31659  df-homul 31660  df-hodif 31661  df-h0op 31677  df-hmop 31773  df-leop 31781
This theorem is referenced by:  opsqrlem6  32074
  Copyright terms: Public domain W3C validator