HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem2 Structured version   Visualization version   GIF version

Theorem cnlnadjlem2 30003
Description: Lemma for cnlnadji 30011. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
Assertion
Ref Expression
cnlnadjlem2 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Distinct variable group:   𝑦,𝑔,𝑇
Allowed substitution hints:   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem2
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.1 . . . . . . . 8 𝑇 ∈ LinOp
21lnopfi 29904 . . . . . . 7 𝑇: ℋ⟶ ℋ
32ffvelrni 6860 . . . . . 6 (𝑔 ∈ ℋ → (𝑇𝑔) ∈ ℋ)
4 hicl 29015 . . . . . 6 (((𝑇𝑔) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
53, 4sylan 583 . . . . 5 ((𝑔 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
65ancoms 462 . . . 4 ((𝑦 ∈ ℋ ∧ 𝑔 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
7 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
86, 7fmptd 6888 . . 3 (𝑦 ∈ ℋ → 𝐺: ℋ⟶ℂ)
9 hvmulcl 28948 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑥 · 𝑤) ∈ ℋ)
101lnopaddi 29906 . . . . . . . . . . . 12 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
11103adant3 1133 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
1211oveq1d 7185 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦))
132ffvelrni 6860 . . . . . . . . . . 11 ((𝑥 · 𝑤) ∈ ℋ → (𝑇‘(𝑥 · 𝑤)) ∈ ℋ)
142ffvelrni 6860 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
15 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
16 ax-his2 29018 . . . . . . . . . . 11 (((𝑇‘(𝑥 · 𝑤)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1713, 14, 15, 16syl3an 1161 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1812, 17eqtrd 2773 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
19183comr 1126 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
20193expa 1119 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
219, 20sylanl2 681 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
22 hvaddcl 28947 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
239, 22sylan 583 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
24 cnlnadjlem.2 . . . . . . . . 9 𝑇 ∈ ContOp
251, 24, 7cnlnadjlem1 30002 . . . . . . . 8 (((𝑥 · 𝑤) + 𝑧) ∈ ℋ → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2623, 25syl 17 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2726adantll 714 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
282ffvelrni 6860 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑇𝑤) ∈ ℋ)
29 ax-his3 29019 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3028, 29syl3an2 1165 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
31303comr 1126 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
32313expb 1121 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
331lnopmuli 29907 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑇‘(𝑥 · 𝑤)) = (𝑥 · (𝑇𝑤)))
3433oveq1d 7185 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
3534adantl 485 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
361, 24, 7cnlnadjlem1 30002 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝐺𝑤) = ((𝑇𝑤) ·ih 𝑦))
3736oveq2d 7186 . . . . . . . . 9 (𝑤 ∈ ℋ → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3837ad2antll 729 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3932, 35, 383eqtr4rd 2784 . . . . . . 7 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦))
401, 24, 7cnlnadjlem1 30002 . . . . . . 7 (𝑧 ∈ ℋ → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
4139, 40oveqan12d 7189 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
4221, 27, 413eqtr4d 2783 . . . . 5 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4342ralrimiva 3096 . . . 4 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4443ralrimivva 3103 . . 3 (𝑦 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
45 ellnfn 29818 . . 3 (𝐺 ∈ LinFn ↔ (𝐺: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧))))
468, 44, 45sylanbrc 586 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ LinFn)
471, 24nmcopexi 29962 . . . . 5 (normop𝑇) ∈ ℝ
48 normcl 29060 . . . . 5 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
49 remulcl 10700 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5047, 48, 49sylancr 590 . . . 4 (𝑦 ∈ ℋ → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5140adantr 484 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
52 hicl 29015 . . . . . . . . . . 11 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5314, 52sylan 583 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5451, 53eqeltrd 2833 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) ∈ ℂ)
5554abscld 14886 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ∈ ℝ)
56 normcl 29060 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
5714, 56syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
58 remulcl 10700 . . . . . . . . 9 (((norm‘(𝑇𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
5957, 48, 58syl2an 599 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
60 normcl 29060 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
61 remulcl 10700 . . . . . . . . . 10 (((normop𝑇) ∈ ℝ ∧ (norm𝑧) ∈ ℝ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
6247, 60, 61sylancr 590 . . . . . . . . 9 (𝑧 ∈ ℋ → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
63 remulcl 10700 . . . . . . . . 9 ((((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6462, 48, 63syl2an 599 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6551fveq2d 6678 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) = (abs‘((𝑇𝑧) ·ih 𝑦)))
66 bcs 29116 . . . . . . . . . 10 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6714, 66sylan 583 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6865, 67eqbrtrd 5052 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6957adantr 484 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ∈ ℝ)
7062adantr 484 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
71 normge0 29061 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 0 ≤ (norm𝑦))
7248, 71jca 515 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
7372adantl 485 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
741, 24nmcoplbi 29963 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
7574adantr 484 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
76 lemul1a 11572 . . . . . . . . 9 ((((norm‘(𝑇𝑧)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦))) ∧ (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧))) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7769, 70, 73, 75, 76syl31anc 1374 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7855, 59, 64, 68, 77letrd 10875 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7960recnd 10747 . . . . . . . 8 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℂ)
8048recnd 10747 . . . . . . . 8 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
8147recni 10733 . . . . . . . . 9 (normop𝑇) ∈ ℂ
82 mul32 10884 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8381, 82mp3an1 1449 . . . . . . . 8 (((norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8479, 80, 83syl2an 599 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8578, 84breqtrd 5056 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8685ancoms 462 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8786ralrimiva 3096 . . . 4 (𝑦 ∈ ℋ → ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
88 oveq1 7177 . . . . . . 7 (𝑥 = ((normop𝑇) · (norm𝑦)) → (𝑥 · (norm𝑧)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8988breq2d 5042 . . . . . 6 (𝑥 = ((normop𝑇) · (norm𝑦)) → ((abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9089ralbidv 3109 . . . . 5 (𝑥 = ((normop𝑇) · (norm𝑦)) → (∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9190rspcev 3526 . . . 4 ((((normop𝑇) · (norm𝑦)) ∈ ℝ ∧ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
9250, 87, 91syl2anc 587 . . 3 (𝑦 ∈ ℋ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
93 lnfncon 29991 . . . 4 (𝐺 ∈ LinFn → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9446, 93syl 17 . . 3 (𝑦 ∈ ℋ → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9592, 94mpbird 260 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ ContFn)
9646, 95jca 515 1 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  wrex 3054   class class class wbr 5030  cmpt 5110  wf 6335  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615   + caddc 10618   · cmul 10620  cle 10754  abscabs 14683  chba 28854   + cva 28855   · csm 28856   ·ih csp 28857  normcno 28858  normopcnop 28880  ContOpccop 28881  LinOpclo 28882  ContFnccnfn 28888  LinFnclf 28889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695  ax-hilex 28934  ax-hfvadd 28935  ax-hvcom 28936  ax-hvass 28937  ax-hv0cl 28938  ax-hvaddid 28939  ax-hfvmul 28940  ax-hvmulid 28941  ax-hvmulass 28942  ax-hvdistr1 28943  ax-hvdistr2 28944  ax-hvmul0 28945  ax-hfi 29014  ax-his1 29017  ax-his2 29018  ax-his3 29019  ax-his4 29020
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-icc 12828  df-fz 12982  df-fzo 13125  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-sum 15136  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-cn 21978  df-cnp 21979  df-t1 22065  df-haus 22066  df-tx 22313  df-hmeo 22506  df-xms 23073  df-ms 23074  df-tms 23075  df-grpo 28428  df-gid 28429  df-ginv 28430  df-gdiv 28431  df-ablo 28480  df-vc 28494  df-nv 28527  df-va 28530  df-ba 28531  df-sm 28532  df-0v 28533  df-vs 28534  df-nmcv 28535  df-ims 28536  df-dip 28636  df-ph 28748  df-hnorm 28903  df-hba 28904  df-hvsub 28906  df-nmop 29774  df-cnop 29775  df-lnop 29776  df-nmfn 29780  df-cnfn 29782  df-lnfn 29783
This theorem is referenced by:  cnlnadjlem3  30004  cnlnadjlem5  30006
  Copyright terms: Public domain W3C validator