HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem2 Structured version   Visualization version   GIF version

Theorem cnlnadjlem2 32100
Description: Lemma for cnlnadji 32108. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
Assertion
Ref Expression
cnlnadjlem2 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Distinct variable group:   𝑦,𝑔,𝑇
Allowed substitution hints:   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem2
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.1 . . . . . . . 8 𝑇 ∈ LinOp
21lnopfi 32001 . . . . . . 7 𝑇: ℋ⟶ ℋ
32ffvelcdmi 7117 . . . . . 6 (𝑔 ∈ ℋ → (𝑇𝑔) ∈ ℋ)
4 hicl 31112 . . . . . 6 (((𝑇𝑔) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
53, 4sylan 579 . . . . 5 ((𝑔 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
65ancoms 458 . . . 4 ((𝑦 ∈ ℋ ∧ 𝑔 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
7 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
86, 7fmptd 7148 . . 3 (𝑦 ∈ ℋ → 𝐺: ℋ⟶ℂ)
9 hvmulcl 31045 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑥 · 𝑤) ∈ ℋ)
101lnopaddi 32003 . . . . . . . . . . . 12 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
11103adant3 1132 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
1211oveq1d 7463 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦))
132ffvelcdmi 7117 . . . . . . . . . . 11 ((𝑥 · 𝑤) ∈ ℋ → (𝑇‘(𝑥 · 𝑤)) ∈ ℋ)
142ffvelcdmi 7117 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
15 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
16 ax-his2 31115 . . . . . . . . . . 11 (((𝑇‘(𝑥 · 𝑤)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1713, 14, 15, 16syl3an 1160 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1812, 17eqtrd 2780 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
19183comr 1125 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
20193expa 1118 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
219, 20sylanl2 680 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
22 hvaddcl 31044 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
239, 22sylan 579 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
24 cnlnadjlem.2 . . . . . . . . 9 𝑇 ∈ ContOp
251, 24, 7cnlnadjlem1 32099 . . . . . . . 8 (((𝑥 · 𝑤) + 𝑧) ∈ ℋ → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2623, 25syl 17 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2726adantll 713 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
282ffvelcdmi 7117 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑇𝑤) ∈ ℋ)
29 ax-his3 31116 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3028, 29syl3an2 1164 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
31303comr 1125 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
32313expb 1120 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
331lnopmuli 32004 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑇‘(𝑥 · 𝑤)) = (𝑥 · (𝑇𝑤)))
3433oveq1d 7463 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
3534adantl 481 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
361, 24, 7cnlnadjlem1 32099 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝐺𝑤) = ((𝑇𝑤) ·ih 𝑦))
3736oveq2d 7464 . . . . . . . . 9 (𝑤 ∈ ℋ → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3837ad2antll 728 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3932, 35, 383eqtr4rd 2791 . . . . . . 7 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦))
401, 24, 7cnlnadjlem1 32099 . . . . . . 7 (𝑧 ∈ ℋ → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
4139, 40oveqan12d 7467 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
4221, 27, 413eqtr4d 2790 . . . . 5 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4342ralrimiva 3152 . . . 4 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4443ralrimivva 3208 . . 3 (𝑦 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
45 ellnfn 31915 . . 3 (𝐺 ∈ LinFn ↔ (𝐺: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧))))
468, 44, 45sylanbrc 582 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ LinFn)
471, 24nmcopexi 32059 . . . . 5 (normop𝑇) ∈ ℝ
48 normcl 31157 . . . . 5 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
49 remulcl 11269 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5047, 48, 49sylancr 586 . . . 4 (𝑦 ∈ ℋ → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5140adantr 480 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
52 hicl 31112 . . . . . . . . . . 11 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5314, 52sylan 579 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5451, 53eqeltrd 2844 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) ∈ ℂ)
5554abscld 15485 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ∈ ℝ)
56 normcl 31157 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
5714, 56syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
58 remulcl 11269 . . . . . . . . 9 (((norm‘(𝑇𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
5957, 48, 58syl2an 595 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
60 normcl 31157 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
61 remulcl 11269 . . . . . . . . . 10 (((normop𝑇) ∈ ℝ ∧ (norm𝑧) ∈ ℝ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
6247, 60, 61sylancr 586 . . . . . . . . 9 (𝑧 ∈ ℋ → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
63 remulcl 11269 . . . . . . . . 9 ((((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6462, 48, 63syl2an 595 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6551fveq2d 6924 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) = (abs‘((𝑇𝑧) ·ih 𝑦)))
66 bcs 31213 . . . . . . . . . 10 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6714, 66sylan 579 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6865, 67eqbrtrd 5188 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6957adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ∈ ℝ)
7062adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
71 normge0 31158 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 0 ≤ (norm𝑦))
7248, 71jca 511 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
7372adantl 481 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
741, 24nmcoplbi 32060 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
7574adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
76 lemul1a 12148 . . . . . . . . 9 ((((norm‘(𝑇𝑧)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦))) ∧ (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧))) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7769, 70, 73, 75, 76syl31anc 1373 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7855, 59, 64, 68, 77letrd 11447 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7960recnd 11318 . . . . . . . 8 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℂ)
8048recnd 11318 . . . . . . . 8 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
8147recni 11304 . . . . . . . . 9 (normop𝑇) ∈ ℂ
82 mul32 11456 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8381, 82mp3an1 1448 . . . . . . . 8 (((norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8479, 80, 83syl2an 595 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8578, 84breqtrd 5192 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8685ancoms 458 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8786ralrimiva 3152 . . . 4 (𝑦 ∈ ℋ → ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
88 oveq1 7455 . . . . . . 7 (𝑥 = ((normop𝑇) · (norm𝑦)) → (𝑥 · (norm𝑧)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8988breq2d 5178 . . . . . 6 (𝑥 = ((normop𝑇) · (norm𝑦)) → ((abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9089ralbidv 3184 . . . . 5 (𝑥 = ((normop𝑇) · (norm𝑦)) → (∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9190rspcev 3635 . . . 4 ((((normop𝑇) · (norm𝑦)) ∈ ℝ ∧ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
9250, 87, 91syl2anc 583 . . 3 (𝑦 ∈ ℋ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
93 lnfncon 32088 . . . 4 (𝐺 ∈ LinFn → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9446, 93syl 17 . . 3 (𝑦 ∈ ℋ → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9592, 94mpbird 257 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ ContFn)
9646, 95jca 511 1 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189  cle 11325  abscabs 15283  chba 30951   + cva 30952   · csm 30953   ·ih csp 30954  normcno 30955  normopcnop 30977  ContOpccop 30978  LinOpclo 30979  ContFnccnfn 30985  LinFnclf 30986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ph 30845  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-nmop 31871  df-cnop 31872  df-lnop 31873  df-nmfn 31877  df-cnfn 31879  df-lnfn 31880
This theorem is referenced by:  cnlnadjlem3  32101  cnlnadjlem5  32103
  Copyright terms: Public domain W3C validator