HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem2 Structured version   Visualization version   GIF version

Theorem cnlnadjlem2 31950
Description: Lemma for cnlnadji 31958. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
Assertion
Ref Expression
cnlnadjlem2 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Distinct variable group:   𝑦,𝑔,𝑇
Allowed substitution hints:   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem2
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.1 . . . . . . . 8 𝑇 ∈ LinOp
21lnopfi 31851 . . . . . . 7 𝑇: ℋ⟶ ℋ
32ffvelcdmi 7092 . . . . . 6 (𝑔 ∈ ℋ → (𝑇𝑔) ∈ ℋ)
4 hicl 30962 . . . . . 6 (((𝑇𝑔) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
53, 4sylan 578 . . . . 5 ((𝑔 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
65ancoms 457 . . . 4 ((𝑦 ∈ ℋ ∧ 𝑔 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
7 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
86, 7fmptd 7123 . . 3 (𝑦 ∈ ℋ → 𝐺: ℋ⟶ℂ)
9 hvmulcl 30895 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑥 · 𝑤) ∈ ℋ)
101lnopaddi 31853 . . . . . . . . . . . 12 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
11103adant3 1129 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
1211oveq1d 7434 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦))
132ffvelcdmi 7092 . . . . . . . . . . 11 ((𝑥 · 𝑤) ∈ ℋ → (𝑇‘(𝑥 · 𝑤)) ∈ ℋ)
142ffvelcdmi 7092 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
15 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
16 ax-his2 30965 . . . . . . . . . . 11 (((𝑇‘(𝑥 · 𝑤)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1713, 14, 15, 16syl3an 1157 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1812, 17eqtrd 2765 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
19183comr 1122 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
20193expa 1115 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
219, 20sylanl2 679 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
22 hvaddcl 30894 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
239, 22sylan 578 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
24 cnlnadjlem.2 . . . . . . . . 9 𝑇 ∈ ContOp
251, 24, 7cnlnadjlem1 31949 . . . . . . . 8 (((𝑥 · 𝑤) + 𝑧) ∈ ℋ → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2623, 25syl 17 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2726adantll 712 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
282ffvelcdmi 7092 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑇𝑤) ∈ ℋ)
29 ax-his3 30966 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3028, 29syl3an2 1161 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
31303comr 1122 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
32313expb 1117 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
331lnopmuli 31854 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑇‘(𝑥 · 𝑤)) = (𝑥 · (𝑇𝑤)))
3433oveq1d 7434 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
3534adantl 480 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
361, 24, 7cnlnadjlem1 31949 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝐺𝑤) = ((𝑇𝑤) ·ih 𝑦))
3736oveq2d 7435 . . . . . . . . 9 (𝑤 ∈ ℋ → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3837ad2antll 727 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3932, 35, 383eqtr4rd 2776 . . . . . . 7 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦))
401, 24, 7cnlnadjlem1 31949 . . . . . . 7 (𝑧 ∈ ℋ → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
4139, 40oveqan12d 7438 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
4221, 27, 413eqtr4d 2775 . . . . 5 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4342ralrimiva 3135 . . . 4 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4443ralrimivva 3190 . . 3 (𝑦 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
45 ellnfn 31765 . . 3 (𝐺 ∈ LinFn ↔ (𝐺: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧))))
468, 44, 45sylanbrc 581 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ LinFn)
471, 24nmcopexi 31909 . . . . 5 (normop𝑇) ∈ ℝ
48 normcl 31007 . . . . 5 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
49 remulcl 11225 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5047, 48, 49sylancr 585 . . . 4 (𝑦 ∈ ℋ → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5140adantr 479 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
52 hicl 30962 . . . . . . . . . . 11 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5314, 52sylan 578 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5451, 53eqeltrd 2825 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) ∈ ℂ)
5554abscld 15419 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ∈ ℝ)
56 normcl 31007 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
5714, 56syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
58 remulcl 11225 . . . . . . . . 9 (((norm‘(𝑇𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
5957, 48, 58syl2an 594 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
60 normcl 31007 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
61 remulcl 11225 . . . . . . . . . 10 (((normop𝑇) ∈ ℝ ∧ (norm𝑧) ∈ ℝ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
6247, 60, 61sylancr 585 . . . . . . . . 9 (𝑧 ∈ ℋ → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
63 remulcl 11225 . . . . . . . . 9 ((((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6462, 48, 63syl2an 594 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6551fveq2d 6900 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) = (abs‘((𝑇𝑧) ·ih 𝑦)))
66 bcs 31063 . . . . . . . . . 10 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6714, 66sylan 578 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6865, 67eqbrtrd 5171 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6957adantr 479 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ∈ ℝ)
7062adantr 479 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
71 normge0 31008 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 0 ≤ (norm𝑦))
7248, 71jca 510 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
7372adantl 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
741, 24nmcoplbi 31910 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
7574adantr 479 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
76 lemul1a 12101 . . . . . . . . 9 ((((norm‘(𝑇𝑧)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦))) ∧ (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧))) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7769, 70, 73, 75, 76syl31anc 1370 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7855, 59, 64, 68, 77letrd 11403 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7960recnd 11274 . . . . . . . 8 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℂ)
8048recnd 11274 . . . . . . . 8 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
8147recni 11260 . . . . . . . . 9 (normop𝑇) ∈ ℂ
82 mul32 11412 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8381, 82mp3an1 1444 . . . . . . . 8 (((norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8479, 80, 83syl2an 594 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8578, 84breqtrd 5175 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8685ancoms 457 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8786ralrimiva 3135 . . . 4 (𝑦 ∈ ℋ → ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
88 oveq1 7426 . . . . . . 7 (𝑥 = ((normop𝑇) · (norm𝑦)) → (𝑥 · (norm𝑧)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8988breq2d 5161 . . . . . 6 (𝑥 = ((normop𝑇) · (norm𝑦)) → ((abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9089ralbidv 3167 . . . . 5 (𝑥 = ((normop𝑇) · (norm𝑦)) → (∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9190rspcev 3606 . . . 4 ((((normop𝑇) · (norm𝑦)) ∈ ℝ ∧ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
9250, 87, 91syl2anc 582 . . 3 (𝑦 ∈ ℋ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
93 lnfncon 31938 . . . 4 (𝐺 ∈ LinFn → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9446, 93syl 17 . . 3 (𝑦 ∈ ℋ → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9592, 94mpbird 256 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ ContFn)
9646, 95jca 510 1 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059   class class class wbr 5149  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140   + caddc 11143   · cmul 11145  cle 11281  abscabs 15217  chba 30801   + cva 30802   · csm 30803   ·ih csp 30804  normcno 30805  normopcnop 30827  ContOpccop 30828  LinOpclo 30829  ContFnccnfn 30835  LinFnclf 30836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220  ax-hilex 30881  ax-hfvadd 30882  ax-hvcom 30883  ax-hvass 30884  ax-hv0cl 30885  ax-hvaddid 30886  ax-hfvmul 30887  ax-hvmulid 30888  ax-hvmulass 30889  ax-hvdistr1 30890  ax-hvdistr2 30891  ax-hvmul0 30892  ax-hfi 30961  ax-his1 30964  ax-his2 30965  ax-his3 30966  ax-his4 30967
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-cn 23175  df-cnp 23176  df-t1 23262  df-haus 23263  df-tx 23510  df-hmeo 23703  df-xms 24270  df-ms 24271  df-tms 24272  df-grpo 30375  df-gid 30376  df-ginv 30377  df-gdiv 30378  df-ablo 30427  df-vc 30441  df-nv 30474  df-va 30477  df-ba 30478  df-sm 30479  df-0v 30480  df-vs 30481  df-nmcv 30482  df-ims 30483  df-dip 30583  df-ph 30695  df-hnorm 30850  df-hba 30851  df-hvsub 30853  df-nmop 31721  df-cnop 31722  df-lnop 31723  df-nmfn 31727  df-cnfn 31729  df-lnfn 31730
This theorem is referenced by:  cnlnadjlem3  31951  cnlnadjlem5  31953
  Copyright terms: Public domain W3C validator