Step | Hyp | Ref
| Expression |
1 | | cnlnadjlem.1 |
. . . . . . . 8
⊢ 𝑇 ∈ LinOp |
2 | 1 | lnopfi 30232 |
. . . . . . 7
⊢ 𝑇: ℋ⟶
ℋ |
3 | 2 | ffvelrni 6942 |
. . . . . 6
⊢ (𝑔 ∈ ℋ → (𝑇‘𝑔) ∈ ℋ) |
4 | | hicl 29343 |
. . . . . 6
⊢ (((𝑇‘𝑔) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑔) ·ih 𝑦) ∈
ℂ) |
5 | 3, 4 | sylan 579 |
. . . . 5
⊢ ((𝑔 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑔) ·ih 𝑦) ∈
ℂ) |
6 | 5 | ancoms 458 |
. . . 4
⊢ ((𝑦 ∈ ℋ ∧ 𝑔 ∈ ℋ) → ((𝑇‘𝑔) ·ih 𝑦) ∈
ℂ) |
7 | | cnlnadjlem.3 |
. . . 4
⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) |
8 | 6, 7 | fmptd 6970 |
. . 3
⊢ (𝑦 ∈ ℋ → 𝐺:
ℋ⟶ℂ) |
9 | | hvmulcl 29276 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑥
·ℎ 𝑤) ∈ ℋ) |
10 | 1 | lnopaddi 30234 |
. . . . . . . . . . . 12
⊢ (((𝑥
·ℎ 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧)) = ((𝑇‘(𝑥 ·ℎ 𝑤)) +ℎ (𝑇‘𝑧))) |
11 | 10 | 3adant3 1130 |
. . . . . . . . . . 11
⊢ (((𝑥
·ℎ 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧)) = ((𝑇‘(𝑥 ·ℎ 𝑤)) +ℎ (𝑇‘𝑧))) |
12 | 11 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝑥
·ℎ 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧))
·ih 𝑦) = (((𝑇‘(𝑥 ·ℎ 𝑤)) +ℎ (𝑇‘𝑧)) ·ih 𝑦)) |
13 | 2 | ffvelrni 6942 |
. . . . . . . . . . 11
⊢ ((𝑥
·ℎ 𝑤) ∈ ℋ → (𝑇‘(𝑥 ·ℎ 𝑤)) ∈
ℋ) |
14 | 2 | ffvelrni 6942 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℋ) |
15 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℋ → 𝑦 ∈
ℋ) |
16 | | ax-his2 29346 |
. . . . . . . . . . 11
⊢ (((𝑇‘(𝑥 ·ℎ 𝑤)) ∈ ℋ ∧ (𝑇‘𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 ·ℎ 𝑤)) +ℎ (𝑇‘𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) + ((𝑇‘𝑧) ·ih 𝑦))) |
17 | 13, 14, 15, 16 | syl3an 1158 |
. . . . . . . . . 10
⊢ (((𝑥
·ℎ 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 ·ℎ 𝑤)) +ℎ (𝑇‘𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) + ((𝑇‘𝑧) ·ih 𝑦))) |
18 | 12, 17 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝑥
·ℎ 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧))
·ih 𝑦) = (((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) + ((𝑇‘𝑧) ·ih 𝑦))) |
19 | 18 | 3comr 1123 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℋ ∧ (𝑥
·ℎ 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧))
·ih 𝑦) = (((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) + ((𝑇‘𝑧) ·ih 𝑦))) |
20 | 19 | 3expa 1116 |
. . . . . . 7
⊢ (((𝑦 ∈ ℋ ∧ (𝑥
·ℎ 𝑤) ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧))
·ih 𝑦) = (((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) + ((𝑇‘𝑧) ·ih 𝑦))) |
21 | 9, 20 | sylanl2 677 |
. . . . . 6
⊢ (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧))
·ih 𝑦) = (((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) + ((𝑇‘𝑧) ·ih 𝑦))) |
22 | | hvaddcl 29275 |
. . . . . . . . 9
⊢ (((𝑥
·ℎ 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑤) +ℎ 𝑧) ∈
ℋ) |
23 | 9, 22 | sylan 579 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑤) +ℎ 𝑧) ∈ ℋ) |
24 | | cnlnadjlem.2 |
. . . . . . . . 9
⊢ 𝑇 ∈ ContOp |
25 | 1, 24, 7 | cnlnadjlem1 30330 |
. . . . . . . 8
⊢ (((𝑥
·ℎ 𝑤) +ℎ 𝑧) ∈ ℋ → (𝐺‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧)) = ((𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧))
·ih 𝑦)) |
26 | 23, 25 | syl 17 |
. . . . . . 7
⊢ (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧)) = ((𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧))
·ih 𝑦)) |
27 | 26 | adantll 710 |
. . . . . 6
⊢ (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧)) = ((𝑇‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧))
·ih 𝑦)) |
28 | 2 | ffvelrni 6942 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ℋ → (𝑇‘𝑤) ∈ ℋ) |
29 | | ax-his3 29347 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ (𝑇‘𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ℎ (𝑇‘𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇‘𝑤) ·ih 𝑦))) |
30 | 28, 29 | syl3an2 1162 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥
·ℎ (𝑇‘𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇‘𝑤) ·ih 𝑦))) |
31 | 30 | 3comr 1123 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑥
·ℎ (𝑇‘𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇‘𝑤) ·ih 𝑦))) |
32 | 31 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑥
·ℎ (𝑇‘𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇‘𝑤) ·ih 𝑦))) |
33 | 1 | lnopmuli 30235 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑇‘(𝑥 ·ℎ 𝑤)) = (𝑥 ·ℎ (𝑇‘𝑤))) |
34 | 33 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) = ((𝑥 ·ℎ (𝑇‘𝑤)) ·ih 𝑦)) |
35 | 34 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) = ((𝑥 ·ℎ (𝑇‘𝑤)) ·ih 𝑦)) |
36 | 1, 24, 7 | cnlnadjlem1 30330 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℋ → (𝐺‘𝑤) = ((𝑇‘𝑤) ·ih 𝑦)) |
37 | 36 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℋ → (𝑥 · (𝐺‘𝑤)) = (𝑥 · ((𝑇‘𝑤) ·ih 𝑦))) |
38 | 37 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺‘𝑤)) = (𝑥 · ((𝑇‘𝑤) ·ih 𝑦))) |
39 | 32, 35, 38 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺‘𝑤)) = ((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦)) |
40 | 1, 24, 7 | cnlnadjlem1 30330 |
. . . . . . 7
⊢ (𝑧 ∈ ℋ → (𝐺‘𝑧) = ((𝑇‘𝑧) ·ih 𝑦)) |
41 | 39, 40 | oveqan12d 7274 |
. . . . . 6
⊢ (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐺‘𝑤)) + (𝐺‘𝑧)) = (((𝑇‘(𝑥 ·ℎ 𝑤))
·ih 𝑦) + ((𝑇‘𝑧) ·ih 𝑦))) |
42 | 21, 27, 41 | 3eqtr4d 2788 |
. . . . 5
⊢ (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 ·ℎ 𝑤) +ℎ 𝑧)) = ((𝑥 · (𝐺‘𝑤)) + (𝐺‘𝑧))) |
43 | 42 | ralrimiva 3107 |
. . . 4
⊢ ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) →
∀𝑧 ∈ ℋ
(𝐺‘((𝑥
·ℎ 𝑤) +ℎ 𝑧)) = ((𝑥 · (𝐺‘𝑤)) + (𝐺‘𝑧))) |
44 | 43 | ralrimivva 3114 |
. . 3
⊢ (𝑦 ∈ ℋ →
∀𝑥 ∈ ℂ
∀𝑤 ∈ ℋ
∀𝑧 ∈ ℋ
(𝐺‘((𝑥
·ℎ 𝑤) +ℎ 𝑧)) = ((𝑥 · (𝐺‘𝑤)) + (𝐺‘𝑧))) |
45 | | ellnfn 30146 |
. . 3
⊢ (𝐺 ∈ LinFn ↔ (𝐺: ℋ⟶ℂ ∧
∀𝑥 ∈ ℂ
∀𝑤 ∈ ℋ
∀𝑧 ∈ ℋ
(𝐺‘((𝑥
·ℎ 𝑤) +ℎ 𝑧)) = ((𝑥 · (𝐺‘𝑤)) + (𝐺‘𝑧)))) |
46 | 8, 44, 45 | sylanbrc 582 |
. 2
⊢ (𝑦 ∈ ℋ → 𝐺 ∈ LinFn) |
47 | 1, 24 | nmcopexi 30290 |
. . . . 5
⊢
(normop‘𝑇) ∈ ℝ |
48 | | normcl 29388 |
. . . . 5
⊢ (𝑦 ∈ ℋ →
(normℎ‘𝑦) ∈ ℝ) |
49 | | remulcl 10887 |
. . . . 5
⊢
(((normop‘𝑇) ∈ ℝ ∧
(normℎ‘𝑦) ∈ ℝ) →
((normop‘𝑇) ·
(normℎ‘𝑦)) ∈ ℝ) |
50 | 47, 48, 49 | sylancr 586 |
. . . 4
⊢ (𝑦 ∈ ℋ →
((normop‘𝑇) ·
(normℎ‘𝑦)) ∈ ℝ) |
51 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺‘𝑧) = ((𝑇‘𝑧) ·ih 𝑦)) |
52 | | hicl 29343 |
. . . . . . . . . . 11
⊢ (((𝑇‘𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑧) ·ih 𝑦) ∈
ℂ) |
53 | 14, 52 | sylan 579 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑧) ·ih 𝑦) ∈
ℂ) |
54 | 51, 53 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺‘𝑧) ∈ ℂ) |
55 | 54 | abscld 15076 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(abs‘(𝐺‘𝑧)) ∈
ℝ) |
56 | | normcl 29388 |
. . . . . . . . . 10
⊢ ((𝑇‘𝑧) ∈ ℋ →
(normℎ‘(𝑇‘𝑧)) ∈ ℝ) |
57 | 14, 56 | syl 17 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℋ →
(normℎ‘(𝑇‘𝑧)) ∈ ℝ) |
58 | | remulcl 10887 |
. . . . . . . . 9
⊢
(((normℎ‘(𝑇‘𝑧)) ∈ ℝ ∧
(normℎ‘𝑦) ∈ ℝ) →
((normℎ‘(𝑇‘𝑧)) ·
(normℎ‘𝑦)) ∈ ℝ) |
59 | 57, 48, 58 | syl2an 595 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
((normℎ‘(𝑇‘𝑧)) ·
(normℎ‘𝑦)) ∈ ℝ) |
60 | | normcl 29388 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℋ →
(normℎ‘𝑧) ∈ ℝ) |
61 | | remulcl 10887 |
. . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℝ ∧
(normℎ‘𝑧) ∈ ℝ) →
((normop‘𝑇) ·
(normℎ‘𝑧)) ∈ ℝ) |
62 | 47, 60, 61 | sylancr 586 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℋ →
((normop‘𝑇) ·
(normℎ‘𝑧)) ∈ ℝ) |
63 | | remulcl 10887 |
. . . . . . . . 9
⊢
((((normop‘𝑇) ·
(normℎ‘𝑧)) ∈ ℝ ∧
(normℎ‘𝑦) ∈ ℝ) →
(((normop‘𝑇) ·
(normℎ‘𝑧)) ·
(normℎ‘𝑦)) ∈ ℝ) |
64 | 62, 48, 63 | syl2an 595 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(((normop‘𝑇) ·
(normℎ‘𝑧)) ·
(normℎ‘𝑦)) ∈ ℝ) |
65 | 51 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(abs‘(𝐺‘𝑧)) = (abs‘((𝑇‘𝑧) ·ih 𝑦))) |
66 | | bcs 29444 |
. . . . . . . . . 10
⊢ (((𝑇‘𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇‘𝑧) ·ih 𝑦)) ≤
((normℎ‘(𝑇‘𝑧)) ·
(normℎ‘𝑦))) |
67 | 14, 66 | sylan 579 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(abs‘((𝑇‘𝑧)
·ih 𝑦)) ≤
((normℎ‘(𝑇‘𝑧)) ·
(normℎ‘𝑦))) |
68 | 65, 67 | eqbrtrd 5092 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(abs‘(𝐺‘𝑧)) ≤
((normℎ‘(𝑇‘𝑧)) ·
(normℎ‘𝑦))) |
69 | 57 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(normℎ‘(𝑇‘𝑧)) ∈ ℝ) |
70 | 62 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
((normop‘𝑇) ·
(normℎ‘𝑧)) ∈ ℝ) |
71 | | normge0 29389 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℋ → 0 ≤
(normℎ‘𝑦)) |
72 | 48, 71 | jca 511 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℋ →
((normℎ‘𝑦) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑦))) |
73 | 72 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑦))) |
74 | 1, 24 | nmcoplbi 30291 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℋ →
(normℎ‘(𝑇‘𝑧)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑧))) |
75 | 74 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(normℎ‘(𝑇‘𝑧)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑧))) |
76 | | lemul1a 11759 |
. . . . . . . . 9
⊢
((((normℎ‘(𝑇‘𝑧)) ∈ ℝ ∧
((normop‘𝑇) ·
(normℎ‘𝑧)) ∈ ℝ ∧
((normℎ‘𝑦) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑦))) ∧
(normℎ‘(𝑇‘𝑧)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑧))) →
((normℎ‘(𝑇‘𝑧)) ·
(normℎ‘𝑦)) ≤ (((normop‘𝑇) ·
(normℎ‘𝑧)) ·
(normℎ‘𝑦))) |
77 | 69, 70, 73, 75, 76 | syl31anc 1371 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
((normℎ‘(𝑇‘𝑧)) ·
(normℎ‘𝑦)) ≤ (((normop‘𝑇) ·
(normℎ‘𝑧)) ·
(normℎ‘𝑦))) |
78 | 55, 59, 64, 68, 77 | letrd 11062 |
. . . . . . 7
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(abs‘(𝐺‘𝑧)) ≤
(((normop‘𝑇) ·
(normℎ‘𝑧)) ·
(normℎ‘𝑦))) |
79 | 60 | recnd 10934 |
. . . . . . . 8
⊢ (𝑧 ∈ ℋ →
(normℎ‘𝑧) ∈ ℂ) |
80 | 48 | recnd 10934 |
. . . . . . . 8
⊢ (𝑦 ∈ ℋ →
(normℎ‘𝑦) ∈ ℂ) |
81 | 47 | recni 10920 |
. . . . . . . . 9
⊢
(normop‘𝑇) ∈ ℂ |
82 | | mul32 11071 |
. . . . . . . . 9
⊢
(((normop‘𝑇) ∈ ℂ ∧
(normℎ‘𝑧) ∈ ℂ ∧
(normℎ‘𝑦) ∈ ℂ) →
(((normop‘𝑇) ·
(normℎ‘𝑧)) ·
(normℎ‘𝑦)) = (((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧))) |
83 | 81, 82 | mp3an1 1446 |
. . . . . . . 8
⊢
(((normℎ‘𝑧) ∈ ℂ ∧
(normℎ‘𝑦) ∈ ℂ) →
(((normop‘𝑇) ·
(normℎ‘𝑧)) ·
(normℎ‘𝑦)) = (((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧))) |
84 | 79, 80, 83 | syl2an 595 |
. . . . . . 7
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(((normop‘𝑇) ·
(normℎ‘𝑧)) ·
(normℎ‘𝑦)) = (((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧))) |
85 | 78, 84 | breqtrd 5096 |
. . . . . 6
⊢ ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(abs‘(𝐺‘𝑧)) ≤
(((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧))) |
86 | 85 | ancoms 458 |
. . . . 5
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) →
(abs‘(𝐺‘𝑧)) ≤
(((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧))) |
87 | 86 | ralrimiva 3107 |
. . . 4
⊢ (𝑦 ∈ ℋ →
∀𝑧 ∈ ℋ
(abs‘(𝐺‘𝑧)) ≤
(((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧))) |
88 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑥 =
((normop‘𝑇) ·
(normℎ‘𝑦)) → (𝑥 ·
(normℎ‘𝑧)) = (((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧))) |
89 | 88 | breq2d 5082 |
. . . . . 6
⊢ (𝑥 =
((normop‘𝑇) ·
(normℎ‘𝑦)) → ((abs‘(𝐺‘𝑧)) ≤ (𝑥 ·
(normℎ‘𝑧)) ↔ (abs‘(𝐺‘𝑧)) ≤ (((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧)))) |
90 | 89 | ralbidv 3120 |
. . . . 5
⊢ (𝑥 =
((normop‘𝑇) ·
(normℎ‘𝑦)) → (∀𝑧 ∈ ℋ (abs‘(𝐺‘𝑧)) ≤ (𝑥 ·
(normℎ‘𝑧)) ↔ ∀𝑧 ∈ ℋ (abs‘(𝐺‘𝑧)) ≤ (((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧)))) |
91 | 90 | rspcev 3552 |
. . . 4
⊢
((((normop‘𝑇) ·
(normℎ‘𝑦)) ∈ ℝ ∧ ∀𝑧 ∈ ℋ
(abs‘(𝐺‘𝑧)) ≤
(((normop‘𝑇) ·
(normℎ‘𝑦)) ·
(normℎ‘𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺‘𝑧)) ≤ (𝑥 ·
(normℎ‘𝑧))) |
92 | 50, 87, 91 | syl2anc 583 |
. . 3
⊢ (𝑦 ∈ ℋ →
∃𝑥 ∈ ℝ
∀𝑧 ∈ ℋ
(abs‘(𝐺‘𝑧)) ≤ (𝑥 ·
(normℎ‘𝑧))) |
93 | | lnfncon 30319 |
. . . 4
⊢ (𝐺 ∈ LinFn → (𝐺 ∈ ContFn ↔
∃𝑥 ∈ ℝ
∀𝑧 ∈ ℋ
(abs‘(𝐺‘𝑧)) ≤ (𝑥 ·
(normℎ‘𝑧)))) |
94 | 46, 93 | syl 17 |
. . 3
⊢ (𝑦 ∈ ℋ → (𝐺 ∈ ContFn ↔
∃𝑥 ∈ ℝ
∀𝑧 ∈ ℋ
(abs‘(𝐺‘𝑧)) ≤ (𝑥 ·
(normℎ‘𝑧)))) |
95 | 92, 94 | mpbird 256 |
. 2
⊢ (𝑦 ∈ ℋ → 𝐺 ∈ ContFn) |
96 | 46, 95 | jca 511 |
1
⊢ (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈
ContFn)) |