HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem2 Structured version   Visualization version   GIF version

Theorem cnlnadjlem2 31997
Description: Lemma for cnlnadji 32005. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
Assertion
Ref Expression
cnlnadjlem2 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Distinct variable group:   𝑦,𝑔,𝑇
Allowed substitution hints:   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem2
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.1 . . . . . . . 8 𝑇 ∈ LinOp
21lnopfi 31898 . . . . . . 7 𝑇: ℋ⟶ ℋ
32ffvelcdmi 7055 . . . . . 6 (𝑔 ∈ ℋ → (𝑇𝑔) ∈ ℋ)
4 hicl 31009 . . . . . 6 (((𝑇𝑔) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
53, 4sylan 580 . . . . 5 ((𝑔 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
65ancoms 458 . . . 4 ((𝑦 ∈ ℋ ∧ 𝑔 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
7 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
86, 7fmptd 7086 . . 3 (𝑦 ∈ ℋ → 𝐺: ℋ⟶ℂ)
9 hvmulcl 30942 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑥 · 𝑤) ∈ ℋ)
101lnopaddi 31900 . . . . . . . . . . . 12 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
11103adant3 1132 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
1211oveq1d 7402 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦))
132ffvelcdmi 7055 . . . . . . . . . . 11 ((𝑥 · 𝑤) ∈ ℋ → (𝑇‘(𝑥 · 𝑤)) ∈ ℋ)
142ffvelcdmi 7055 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
15 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
16 ax-his2 31012 . . . . . . . . . . 11 (((𝑇‘(𝑥 · 𝑤)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1713, 14, 15, 16syl3an 1160 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1812, 17eqtrd 2764 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
19183comr 1125 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
20193expa 1118 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
219, 20sylanl2 681 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
22 hvaddcl 30941 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
239, 22sylan 580 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
24 cnlnadjlem.2 . . . . . . . . 9 𝑇 ∈ ContOp
251, 24, 7cnlnadjlem1 31996 . . . . . . . 8 (((𝑥 · 𝑤) + 𝑧) ∈ ℋ → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2623, 25syl 17 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2726adantll 714 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
282ffvelcdmi 7055 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑇𝑤) ∈ ℋ)
29 ax-his3 31013 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3028, 29syl3an2 1164 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
31303comr 1125 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
32313expb 1120 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
331lnopmuli 31901 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑇‘(𝑥 · 𝑤)) = (𝑥 · (𝑇𝑤)))
3433oveq1d 7402 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
3534adantl 481 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
361, 24, 7cnlnadjlem1 31996 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝐺𝑤) = ((𝑇𝑤) ·ih 𝑦))
3736oveq2d 7403 . . . . . . . . 9 (𝑤 ∈ ℋ → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3837ad2antll 729 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3932, 35, 383eqtr4rd 2775 . . . . . . 7 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦))
401, 24, 7cnlnadjlem1 31996 . . . . . . 7 (𝑧 ∈ ℋ → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
4139, 40oveqan12d 7406 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
4221, 27, 413eqtr4d 2774 . . . . 5 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4342ralrimiva 3125 . . . 4 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4443ralrimivva 3180 . . 3 (𝑦 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
45 ellnfn 31812 . . 3 (𝐺 ∈ LinFn ↔ (𝐺: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧))))
468, 44, 45sylanbrc 583 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ LinFn)
471, 24nmcopexi 31956 . . . . 5 (normop𝑇) ∈ ℝ
48 normcl 31054 . . . . 5 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
49 remulcl 11153 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5047, 48, 49sylancr 587 . . . 4 (𝑦 ∈ ℋ → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5140adantr 480 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
52 hicl 31009 . . . . . . . . . . 11 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5314, 52sylan 580 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5451, 53eqeltrd 2828 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) ∈ ℂ)
5554abscld 15405 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ∈ ℝ)
56 normcl 31054 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
5714, 56syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
58 remulcl 11153 . . . . . . . . 9 (((norm‘(𝑇𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
5957, 48, 58syl2an 596 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
60 normcl 31054 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
61 remulcl 11153 . . . . . . . . . 10 (((normop𝑇) ∈ ℝ ∧ (norm𝑧) ∈ ℝ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
6247, 60, 61sylancr 587 . . . . . . . . 9 (𝑧 ∈ ℋ → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
63 remulcl 11153 . . . . . . . . 9 ((((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6462, 48, 63syl2an 596 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6551fveq2d 6862 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) = (abs‘((𝑇𝑧) ·ih 𝑦)))
66 bcs 31110 . . . . . . . . . 10 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6714, 66sylan 580 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6865, 67eqbrtrd 5129 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6957adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ∈ ℝ)
7062adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
71 normge0 31055 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 0 ≤ (norm𝑦))
7248, 71jca 511 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
7372adantl 481 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
741, 24nmcoplbi 31957 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
7574adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
76 lemul1a 12036 . . . . . . . . 9 ((((norm‘(𝑇𝑧)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦))) ∧ (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧))) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7769, 70, 73, 75, 76syl31anc 1375 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7855, 59, 64, 68, 77letrd 11331 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7960recnd 11202 . . . . . . . 8 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℂ)
8048recnd 11202 . . . . . . . 8 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
8147recni 11188 . . . . . . . . 9 (normop𝑇) ∈ ℂ
82 mul32 11340 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8381, 82mp3an1 1450 . . . . . . . 8 (((norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8479, 80, 83syl2an 596 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8578, 84breqtrd 5133 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8685ancoms 458 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8786ralrimiva 3125 . . . 4 (𝑦 ∈ ℋ → ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
88 oveq1 7394 . . . . . . 7 (𝑥 = ((normop𝑇) · (norm𝑦)) → (𝑥 · (norm𝑧)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8988breq2d 5119 . . . . . 6 (𝑥 = ((normop𝑇) · (norm𝑦)) → ((abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9089ralbidv 3156 . . . . 5 (𝑥 = ((normop𝑇) · (norm𝑦)) → (∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9190rspcev 3588 . . . 4 ((((normop𝑇) · (norm𝑦)) ∈ ℝ ∧ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
9250, 87, 91syl2anc 584 . . 3 (𝑦 ∈ ℋ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
93 lnfncon 31985 . . . 4 (𝐺 ∈ LinFn → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9446, 93syl 17 . . 3 (𝑦 ∈ ℋ → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9592, 94mpbird 257 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ ContFn)
9646, 95jca 511 1 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073  cle 11209  abscabs 15200  chba 30848   + cva 30849   · csm 30850   ·ih csp 30851  normcno 30852  normopcnop 30874  ContOpccop 30875  LinOpclo 30876  ContFnccnfn 30882  LinFnclf 30883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ph 30742  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-nmop 31768  df-cnop 31769  df-lnop 31770  df-nmfn 31774  df-cnfn 31776  df-lnfn 31777
This theorem is referenced by:  cnlnadjlem3  31998  cnlnadjlem5  32000
  Copyright terms: Public domain W3C validator