HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem2 Structured version   Visualization version   GIF version

Theorem cnlnadjlem2 32016
Description: Lemma for cnlnadji 32024. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
Assertion
Ref Expression
cnlnadjlem2 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Distinct variable group:   𝑦,𝑔,𝑇
Allowed substitution hints:   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem2
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.1 . . . . . . . 8 𝑇 ∈ LinOp
21lnopfi 31917 . . . . . . 7 𝑇: ℋ⟶ ℋ
32ffvelcdmi 7017 . . . . . 6 (𝑔 ∈ ℋ → (𝑇𝑔) ∈ ℋ)
4 hicl 31028 . . . . . 6 (((𝑇𝑔) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
53, 4sylan 580 . . . . 5 ((𝑔 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
65ancoms 458 . . . 4 ((𝑦 ∈ ℋ ∧ 𝑔 ∈ ℋ) → ((𝑇𝑔) ·ih 𝑦) ∈ ℂ)
7 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
86, 7fmptd 7048 . . 3 (𝑦 ∈ ℋ → 𝐺: ℋ⟶ℂ)
9 hvmulcl 30961 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑥 · 𝑤) ∈ ℋ)
101lnopaddi 31919 . . . . . . . . . . . 12 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
11103adant3 1132 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)))
1211oveq1d 7364 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦))
132ffvelcdmi 7017 . . . . . . . . . . 11 ((𝑥 · 𝑤) ∈ ℋ → (𝑇‘(𝑥 · 𝑤)) ∈ ℋ)
142ffvelcdmi 7017 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
15 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
16 ax-his2 31031 . . . . . . . . . . 11 (((𝑇‘(𝑥 · 𝑤)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1713, 14, 15, 16syl3an 1160 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇‘(𝑥 · 𝑤)) + (𝑇𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
1812, 17eqtrd 2764 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
19183comr 1125 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
20193expa 1118 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (𝑥 · 𝑤) ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
219, 20sylanl2 681 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
22 hvaddcl 30960 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
239, 22sylan 580 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑤) + 𝑧) ∈ ℋ)
24 cnlnadjlem.2 . . . . . . . . 9 𝑇 ∈ ContOp
251, 24, 7cnlnadjlem1 32015 . . . . . . . 8 (((𝑥 · 𝑤) + 𝑧) ∈ ℋ → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2623, 25syl 17 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
2726adantll 714 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑇‘((𝑥 · 𝑤) + 𝑧)) ·ih 𝑦))
282ffvelcdmi 7017 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑇𝑤) ∈ ℋ)
29 ax-his3 31032 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3028, 29syl3an2 1164 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
31303comr 1125 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
32313expb 1120 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑥 · (𝑇𝑤)) ·ih 𝑦) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
331lnopmuli 31920 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → (𝑇‘(𝑥 · 𝑤)) = (𝑥 · (𝑇𝑤)))
3433oveq1d 7364 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
3534adantl 481 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) = ((𝑥 · (𝑇𝑤)) ·ih 𝑦))
361, 24, 7cnlnadjlem1 32015 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝐺𝑤) = ((𝑇𝑤) ·ih 𝑦))
3736oveq2d 7365 . . . . . . . . 9 (𝑤 ∈ ℋ → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3837ad2antll 729 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = (𝑥 · ((𝑇𝑤) ·ih 𝑦)))
3932, 35, 383eqtr4rd 2775 . . . . . . 7 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → (𝑥 · (𝐺𝑤)) = ((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦))
401, 24, 7cnlnadjlem1 32015 . . . . . . 7 (𝑧 ∈ ℋ → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
4139, 40oveqan12d 7368 . . . . . 6 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)) = (((𝑇‘(𝑥 · 𝑤)) ·ih 𝑦) + ((𝑇𝑧) ·ih 𝑦)))
4221, 27, 413eqtr4d 2774 . . . . 5 (((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4342ralrimiva 3121 . . . 4 ((𝑦 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
4443ralrimivva 3172 . . 3 (𝑦 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧)))
45 ellnfn 31831 . . 3 (𝐺 ∈ LinFn ↔ (𝐺: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑤 ∈ ℋ ∀𝑧 ∈ ℋ (𝐺‘((𝑥 · 𝑤) + 𝑧)) = ((𝑥 · (𝐺𝑤)) + (𝐺𝑧))))
468, 44, 45sylanbrc 583 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ LinFn)
471, 24nmcopexi 31975 . . . . 5 (normop𝑇) ∈ ℝ
48 normcl 31073 . . . . 5 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
49 remulcl 11094 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5047, 48, 49sylancr 587 . . . 4 (𝑦 ∈ ℋ → ((normop𝑇) · (norm𝑦)) ∈ ℝ)
5140adantr 480 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) = ((𝑇𝑧) ·ih 𝑦))
52 hicl 31028 . . . . . . . . . . 11 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5314, 52sylan 580 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑦) ∈ ℂ)
5451, 53eqeltrd 2828 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝐺𝑧) ∈ ℂ)
5554abscld 15346 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ∈ ℝ)
56 normcl 31073 . . . . . . . . . 10 ((𝑇𝑧) ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
5714, 56syl 17 . . . . . . . . 9 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ∈ ℝ)
58 remulcl 11094 . . . . . . . . 9 (((norm‘(𝑇𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
5957, 48, 58syl2an 596 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ∈ ℝ)
60 normcl 31073 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
61 remulcl 11094 . . . . . . . . . 10 (((normop𝑇) ∈ ℝ ∧ (norm𝑧) ∈ ℝ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
6247, 60, 61sylancr 587 . . . . . . . . 9 (𝑧 ∈ ℋ → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
63 remulcl 11094 . . . . . . . . 9 ((((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6462, 48, 63syl2an 596 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) ∈ ℝ)
6551fveq2d 6826 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) = (abs‘((𝑇𝑧) ·ih 𝑦)))
66 bcs 31129 . . . . . . . . . 10 (((𝑇𝑧) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6714, 66sylan 580 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((𝑇𝑧) ·ih 𝑦)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6865, 67eqbrtrd 5114 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ ((norm‘(𝑇𝑧)) · (norm𝑦)))
6957adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ∈ ℝ)
7062adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normop𝑇) · (norm𝑧)) ∈ ℝ)
71 normge0 31074 . . . . . . . . . . 11 (𝑦 ∈ ℋ → 0 ≤ (norm𝑦))
7248, 71jca 511 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
7372adantl 481 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦)))
741, 24nmcoplbi 31976 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
7574adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
76 lemul1a 11978 . . . . . . . . 9 ((((norm‘(𝑇𝑧)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑧)) ∈ ℝ ∧ ((norm𝑦) ∈ ℝ ∧ 0 ≤ (norm𝑦))) ∧ (norm‘(𝑇𝑧)) ≤ ((normop𝑇) · (norm𝑧))) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7769, 70, 73, 75, 76syl31anc 1375 . . . . . . . 8 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑇𝑧)) · (norm𝑦)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7855, 59, 64, 68, 77letrd 11273 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑧)) · (norm𝑦)))
7960recnd 11143 . . . . . . . 8 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℂ)
8048recnd 11143 . . . . . . . 8 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
8147recni 11129 . . . . . . . . 9 (normop𝑇) ∈ ℂ
82 mul32 11282 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8381, 82mp3an1 1450 . . . . . . . 8 (((norm𝑧) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8479, 80, 83syl2an 596 . . . . . . 7 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((normop𝑇) · (norm𝑧)) · (norm𝑦)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8578, 84breqtrd 5118 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8685ancoms 458 . . . . 5 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8786ralrimiva 3121 . . . 4 (𝑦 ∈ ℋ → ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
88 oveq1 7356 . . . . . . 7 (𝑥 = ((normop𝑇) · (norm𝑦)) → (𝑥 · (norm𝑧)) = (((normop𝑇) · (norm𝑦)) · (norm𝑧)))
8988breq2d 5104 . . . . . 6 (𝑥 = ((normop𝑇) · (norm𝑦)) → ((abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9089ralbidv 3152 . . . . 5 (𝑥 = ((normop𝑇) · (norm𝑦)) → (∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))))
9190rspcev 3577 . . . 4 ((((normop𝑇) · (norm𝑦)) ∈ ℝ ∧ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (((normop𝑇) · (norm𝑦)) · (norm𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
9250, 87, 91syl2anc 584 . . 3 (𝑦 ∈ ℋ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧)))
93 lnfncon 32004 . . . 4 (𝐺 ∈ LinFn → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9446, 93syl 17 . . 3 (𝑦 ∈ ℋ → (𝐺 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (abs‘(𝐺𝑧)) ≤ (𝑥 · (norm𝑧))))
9592, 94mpbird 257 . 2 (𝑦 ∈ ℋ → 𝐺 ∈ ContFn)
9646, 95jca 511 1 (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014  cle 11150  abscabs 15141  chba 30867   + cva 30868   · csm 30869   ·ih csp 30870  normcno 30871  normopcnop 30893  ContOpccop 30894  LinOpclo 30895  ContFnccnfn 30901  LinFnclf 30902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089  ax-hilex 30947  ax-hfvadd 30948  ax-hvcom 30949  ax-hvass 30950  ax-hv0cl 30951  ax-hvaddid 30952  ax-hfvmul 30953  ax-hvmulid 30954  ax-hvmulass 30955  ax-hvdistr1 30956  ax-hvdistr2 30957  ax-hvmul0 30958  ax-hfi 31027  ax-his1 31030  ax-his2 31031  ax-his3 31032  ax-his4 31033
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-cn 23112  df-cnp 23113  df-t1 23199  df-haus 23200  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-grpo 30441  df-gid 30442  df-ginv 30443  df-gdiv 30444  df-ablo 30493  df-vc 30507  df-nv 30540  df-va 30543  df-ba 30544  df-sm 30545  df-0v 30546  df-vs 30547  df-nmcv 30548  df-ims 30549  df-dip 30649  df-ph 30761  df-hnorm 30916  df-hba 30917  df-hvsub 30919  df-nmop 31787  df-cnop 31788  df-lnop 31789  df-nmfn 31793  df-cnfn 31795  df-lnfn 31796
This theorem is referenced by:  cnlnadjlem3  32017  cnlnadjlem5  32019
  Copyright terms: Public domain W3C validator