![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > braadd | Structured version Visualization version GIF version |
Description: Linearity property of bra for addition. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
braadd | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his2 30301 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) | |
2 | 1 | 3comr 1126 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 +ℎ 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) |
3 | hvaddcl 30230 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) | |
4 | braval 31162 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 +ℎ 𝐶) ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = ((𝐵 +ℎ 𝐶) ·ih 𝐴)) | |
5 | 3, 4 | sylan2 594 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = ((𝐵 +ℎ 𝐶) ·ih 𝐴)) |
6 | 5 | 3impb 1116 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = ((𝐵 +ℎ 𝐶) ·ih 𝐴)) |
7 | braval 31162 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) | |
8 | 7 | 3adant3 1133 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) |
9 | braval 31162 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴)) | |
10 | 9 | 3adant2 1132 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴)) |
11 | 8, 10 | oveq12d 7414 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶)) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) |
12 | 2, 6, 11 | 3eqtr4d 2783 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ‘cfv 6535 (class class class)co 7396 + caddc 11100 ℋchba 30137 +ℎ cva 30138 ·ih csp 30140 bracbr 30174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5423 ax-hilex 30217 ax-hfvadd 30218 ax-his2 30301 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-ov 7399 df-bra 31068 |
This theorem is referenced by: bralnfn 31166 |
Copyright terms: Public domain | W3C validator |