HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  braadd Structured version   Visualization version   GIF version

Theorem braadd 31163
Description: Linearity property of bra for addition. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
braadd ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 + 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶)))

Proof of Theorem braadd
StepHypRef Expression
1 ax-his2 30301 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 + 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴)))
213comr 1126 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 + 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴)))
3 hvaddcl 30230 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) ∈ ℋ)
4 braval 31162 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 + 𝐶) ∈ ℋ) → ((bra‘𝐴)‘(𝐵 + 𝐶)) = ((𝐵 + 𝐶) ·ih 𝐴))
53, 4sylan2 594 . . 3 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴)‘(𝐵 + 𝐶)) = ((𝐵 + 𝐶) ·ih 𝐴))
653impb 1116 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 + 𝐶)) = ((𝐵 + 𝐶) ·ih 𝐴))
7 braval 31162 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
873adant3 1133 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
9 braval 31162 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴))
1093adant2 1132 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴))
118, 10oveq12d 7414 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶)) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴)))
122, 6, 113eqtr4d 2783 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 + 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cfv 6535  (class class class)co 7396   + caddc 11100  chba 30137   + cva 30138   ·ih csp 30140  bracbr 30174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-hilex 30217  ax-hfvadd 30218  ax-his2 30301
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-ov 7399  df-bra 31068
This theorem is referenced by:  bralnfn  31166
  Copyright terms: Public domain W3C validator