| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > braadd | Structured version Visualization version GIF version | ||
| Description: Linearity property of bra for addition. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| braadd | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his2 31063 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 +ℎ 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) |
| 3 | hvaddcl 30992 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) | |
| 4 | braval 31924 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 +ℎ 𝐶) ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = ((𝐵 +ℎ 𝐶) ·ih 𝐴)) | |
| 5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = ((𝐵 +ℎ 𝐶) ·ih 𝐴)) |
| 6 | 5 | 3impb 1114 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = ((𝐵 +ℎ 𝐶) ·ih 𝐴)) |
| 7 | braval 31924 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) | |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) |
| 9 | braval 31924 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴)) | |
| 10 | 9 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴)) |
| 11 | 8, 10 | oveq12d 7364 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶)) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) |
| 12 | 2, 6, 11 | 3eqtr4d 2776 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 + caddc 11009 ℋchba 30899 +ℎ cva 30900 ·ih csp 30902 bracbr 30936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-hilex 30979 ax-hfvadd 30980 ax-his2 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-bra 31830 |
| This theorem is referenced by: bralnfn 31928 |
| Copyright terms: Public domain | W3C validator |