HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjspansn Structured version   Visualization version   GIF version

Theorem pjspansn 30519
Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjspansn ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))

Proof of Theorem pjspansn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spansnch 30502 . . . 4 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ C )
213ad2ant1 1133 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (span‘{𝐴}) ∈ C )
3 simp2 1137 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
4 eqid 2736 . . . . 5 ((proj‘(span‘{𝐴}))‘𝐵) = ((proj‘(span‘{𝐴}))‘𝐵)
5 pjeq 30341 . . . . 5 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) = ((proj‘(span‘{𝐴}))‘𝐵) ↔ (((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}) ∧ ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))))
64, 5mpbii 232 . . . 4 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}) ∧ ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦)))
76simprd 496 . . 3 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))
82, 3, 7syl2anc 584 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))
9 oveq1 7364 . . . . . . 7 (𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) → (𝐵 ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴))
109ad2antll 727 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (𝐵 ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴))
11 pjhcl 30343 . . . . . . . . . . 11 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
122, 3, 11syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
1312adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
14 choccl 30248 . . . . . . . . . . . 12 ((span‘{𝐴}) ∈ C → (⊥‘(span‘{𝐴})) ∈ C )
151, 14syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (⊥‘(span‘{𝐴})) ∈ C )
16153ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (⊥‘(span‘{𝐴})) ∈ C )
17 chel 30172 . . . . . . . . . 10 (((⊥‘(span‘{𝐴})) ∈ C𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
1816, 17sylan 580 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
19 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝐴 ∈ ℋ)
20 ax-his2 30025 . . . . . . . . 9 ((((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)))
2113, 18, 19, 20syl3anc 1371 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)))
22 spansnsh 30503 . . . . . . . . . . . . 13 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ S )
2322adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (span‘{𝐴}) ∈ S )
24 spansnid 30505 . . . . . . . . . . . . 13 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
2524adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝐴 ∈ (span‘{𝐴}))
26 simpr 485 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ (⊥‘(span‘{𝐴})))
27 shocorth 30234 . . . . . . . . . . . . 13 ((span‘{𝐴}) ∈ S → ((𝐴 ∈ (span‘{𝐴}) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0))
28273impib 1116 . . . . . . . . . . . 12 (((span‘{𝐴}) ∈ S𝐴 ∈ (span‘{𝐴}) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0)
2923, 25, 26, 28syl3anc 1371 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0)
3015, 17sylan 580 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
31 orthcom 30050 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·ih 𝑦) = 0 ↔ (𝑦 ·ih 𝐴) = 0))
3230, 31syldan 591 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((𝐴 ·ih 𝑦) = 0 ↔ (𝑦 ·ih 𝐴) = 0))
3329, 32mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝑦 ·ih 𝐴) = 0)
34333ad2antl1 1185 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝑦 ·ih 𝐴) = 0)
3534oveq2d 7373 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + 0))
36 hicl 30022 . . . . . . . . . 10 ((((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) ∈ ℂ)
3713, 19, 36syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) ∈ ℂ)
3837addid1d 11355 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + 0) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
3921, 35, 383eqtrd 2780 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4039adantrr 715 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4110, 40eqtrd 2776 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (𝐵 ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4241oveq1d 7372 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)))
4342oveq1d 7372 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
44 simpl1 1191 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → 𝐴 ∈ ℋ)
45 simpl3 1193 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → 𝐴 ≠ 0)
46 axpjcl 30342 . . . . . 6 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
472, 3, 46syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
4847adantr 481 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
49 normcan 30518 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴})) → (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((proj‘(span‘{𝐴}))‘𝐵))
5044, 45, 48, 49syl3anc 1371 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((proj‘(span‘{𝐴}))‘𝐵))
5143, 50eqtr2d 2777 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
528, 51rexlimddv 3158 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {csn 4586  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054   / cdiv 11812  2c2 12208  cexp 13967  chba 29861   + cva 29862   · csm 29863   ·ih csp 29864  normcno 29865  0c0v 29866   S csh 29870   C cch 29871  cort 29872  spancspn 29874  projcpjh 29879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027  ax-hcompl 30144
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-lm 22580  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cfil 24619  df-cau 24620  df-cmet 24621  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-dip 29643  df-ssp 29664  df-ph 29755  df-cbn 29805  df-hnorm 29910  df-hba 29911  df-hvsub 29913  df-hlim 29914  df-hcau 29915  df-sh 30149  df-ch 30163  df-oc 30194  df-ch0 30195  df-shs 30250  df-span 30251  df-pjh 30337
This theorem is referenced by:  kbpj  30898
  Copyright terms: Public domain W3C validator