HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjspansn Structured version   Visualization version   GIF version

Theorem pjspansn 29346
Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjspansn ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))

Proof of Theorem pjspansn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spansnch 29329 . . . 4 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ C )
213ad2ant1 1128 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (span‘{𝐴}) ∈ C )
3 simp2 1132 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
4 eqid 2819 . . . . 5 ((proj‘(span‘{𝐴}))‘𝐵) = ((proj‘(span‘{𝐴}))‘𝐵)
5 pjeq 29168 . . . . 5 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) = ((proj‘(span‘{𝐴}))‘𝐵) ↔ (((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}) ∧ ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))))
64, 5mpbii 235 . . . 4 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}) ∧ ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦)))
76simprd 498 . . 3 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))
82, 3, 7syl2anc 586 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))
9 oveq1 7155 . . . . . . 7 (𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) → (𝐵 ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴))
109ad2antll 727 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (𝐵 ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴))
11 pjhcl 29170 . . . . . . . . . . 11 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
122, 3, 11syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
1312adantr 483 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
14 choccl 29075 . . . . . . . . . . . 12 ((span‘{𝐴}) ∈ C → (⊥‘(span‘{𝐴})) ∈ C )
151, 14syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (⊥‘(span‘{𝐴})) ∈ C )
16153ad2ant1 1128 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (⊥‘(span‘{𝐴})) ∈ C )
17 chel 28999 . . . . . . . . . 10 (((⊥‘(span‘{𝐴})) ∈ C𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
1816, 17sylan 582 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
19 simpl1 1186 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝐴 ∈ ℋ)
20 ax-his2 28852 . . . . . . . . 9 ((((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)))
2113, 18, 19, 20syl3anc 1366 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)))
22 spansnsh 29330 . . . . . . . . . . . . 13 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ S )
2322adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (span‘{𝐴}) ∈ S )
24 spansnid 29332 . . . . . . . . . . . . 13 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
2524adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝐴 ∈ (span‘{𝐴}))
26 simpr 487 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ (⊥‘(span‘{𝐴})))
27 shocorth 29061 . . . . . . . . . . . . 13 ((span‘{𝐴}) ∈ S → ((𝐴 ∈ (span‘{𝐴}) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0))
28273impib 1111 . . . . . . . . . . . 12 (((span‘{𝐴}) ∈ S𝐴 ∈ (span‘{𝐴}) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0)
2923, 25, 26, 28syl3anc 1366 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0)
3015, 17sylan 582 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
31 orthcom 28877 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·ih 𝑦) = 0 ↔ (𝑦 ·ih 𝐴) = 0))
3230, 31syldan 593 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((𝐴 ·ih 𝑦) = 0 ↔ (𝑦 ·ih 𝐴) = 0))
3329, 32mpbid 234 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝑦 ·ih 𝐴) = 0)
34333ad2antl1 1180 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝑦 ·ih 𝐴) = 0)
3534oveq2d 7164 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + 0))
36 hicl 28849 . . . . . . . . . 10 ((((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) ∈ ℂ)
3713, 19, 36syl2anc 586 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) ∈ ℂ)
3837addid1d 10832 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + 0) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
3921, 35, 383eqtrd 2858 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4039adantrr 715 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4110, 40eqtrd 2854 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (𝐵 ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4241oveq1d 7163 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)))
4342oveq1d 7163 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
44 simpl1 1186 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → 𝐴 ∈ ℋ)
45 simpl3 1188 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → 𝐴 ≠ 0)
46 axpjcl 29169 . . . . . 6 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
472, 3, 46syl2anc 586 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
4847adantr 483 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
49 normcan 29345 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴})) → (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((proj‘(span‘{𝐴}))‘𝐵))
5044, 45, 48, 49syl3anc 1366 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((proj‘(span‘{𝐴}))‘𝐵))
5143, 50eqtr2d 2855 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
528, 51rexlimddv 3289 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wrex 3137  {csn 4559  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529   + caddc 10532   / cdiv 11289  2c2 11684  cexp 13421  chba 28688   + cva 28689   · csm 28690   ·ih csp 28691  normcno 28692  0c0v 28693   S csh 28697   C cch 28698  cort 28699  spancspn 28701  projcpjh 28706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609  ax-hilex 28768  ax-hfvadd 28769  ax-hvcom 28770  ax-hvass 28771  ax-hv0cl 28772  ax-hvaddid 28773  ax-hfvmul 28774  ax-hvmulid 28775  ax-hvmulass 28776  ax-hvdistr1 28777  ax-hvdistr2 28778  ax-hvmul0 28779  ax-hfi 28848  ax-his1 28851  ax-his2 28852  ax-his3 28853  ax-his4 28854  ax-hcompl 28971
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-omul 8099  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-cn 21827  df-cnp 21828  df-lm 21829  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cfil 23850  df-cau 23851  df-cmet 23852  df-grpo 28262  df-gid 28263  df-ginv 28264  df-gdiv 28265  df-ablo 28314  df-vc 28328  df-nv 28361  df-va 28364  df-ba 28365  df-sm 28366  df-0v 28367  df-vs 28368  df-nmcv 28369  df-ims 28370  df-dip 28470  df-ssp 28491  df-ph 28582  df-cbn 28632  df-hnorm 28737  df-hba 28738  df-hvsub 28740  df-hlim 28741  df-hcau 28742  df-sh 28976  df-ch 28990  df-oc 29021  df-ch0 29022  df-shs 29077  df-span 29078  df-pjh 29164
This theorem is referenced by:  kbpj  29725
  Copyright terms: Public domain W3C validator