![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normlem8 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem8.1 | ⊢ 𝐴 ∈ ℋ |
normlem8.2 | ⊢ 𝐵 ∈ ℋ |
normlem8.3 | ⊢ 𝐶 ∈ ℋ |
normlem8.4 | ⊢ 𝐷 ∈ ℋ |
Ref | Expression |
---|---|
normlem8 | ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐶 +ℎ 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem8.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | normlem8.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
3 | normlem8.4 | . . . 4 ⊢ 𝐷 ∈ ℋ | |
4 | his7 31122 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐴 ·ih (𝐶 +ℎ 𝐷)) = ((𝐴 ·ih 𝐶) + (𝐴 ·ih 𝐷))) | |
5 | 1, 2, 3, 4 | mp3an 1461 | . . 3 ⊢ (𝐴 ·ih (𝐶 +ℎ 𝐷)) = ((𝐴 ·ih 𝐶) + (𝐴 ·ih 𝐷)) |
6 | normlem8.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
7 | his7 31122 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ·ih (𝐶 +ℎ 𝐷)) = ((𝐵 ·ih 𝐶) + (𝐵 ·ih 𝐷))) | |
8 | 6, 2, 3, 7 | mp3an 1461 | . . 3 ⊢ (𝐵 ·ih (𝐶 +ℎ 𝐷)) = ((𝐵 ·ih 𝐶) + (𝐵 ·ih 𝐷)) |
9 | 5, 8 | oveq12i 7460 | . 2 ⊢ ((𝐴 ·ih (𝐶 +ℎ 𝐷)) + (𝐵 ·ih (𝐶 +ℎ 𝐷))) = (((𝐴 ·ih 𝐶) + (𝐴 ·ih 𝐷)) + ((𝐵 ·ih 𝐶) + (𝐵 ·ih 𝐷))) |
10 | 2, 3 | hvaddcli 31050 | . . 3 ⊢ (𝐶 +ℎ 𝐷) ∈ ℋ |
11 | ax-his2 31115 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐶 +ℎ 𝐷) ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih (𝐶 +ℎ 𝐷)) = ((𝐴 ·ih (𝐶 +ℎ 𝐷)) + (𝐵 ·ih (𝐶 +ℎ 𝐷)))) | |
12 | 1, 6, 10, 11 | mp3an 1461 | . 2 ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐶 +ℎ 𝐷)) = ((𝐴 ·ih (𝐶 +ℎ 𝐷)) + (𝐵 ·ih (𝐶 +ℎ 𝐷))) |
13 | 1, 2 | hicli 31113 | . . 3 ⊢ (𝐴 ·ih 𝐶) ∈ ℂ |
14 | 6, 3 | hicli 31113 | . . 3 ⊢ (𝐵 ·ih 𝐷) ∈ ℂ |
15 | 1, 3 | hicli 31113 | . . 3 ⊢ (𝐴 ·ih 𝐷) ∈ ℂ |
16 | 6, 2 | hicli 31113 | . . 3 ⊢ (𝐵 ·ih 𝐶) ∈ ℂ |
17 | 13, 14, 15, 16 | add42i 11515 | . 2 ⊢ (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐴 ·ih 𝐷)) + ((𝐵 ·ih 𝐶) + (𝐵 ·ih 𝐷))) |
18 | 9, 12, 17 | 3eqtr4i 2778 | 1 ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐶 +ℎ 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 + caddc 11187 ℋchba 30951 +ℎ cva 30952 ·ih csp 30954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-hfvadd 31032 ax-hfi 31111 ax-his1 31114 ax-his2 31115 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-cj 15148 df-re 15149 df-im 15150 |
This theorem is referenced by: normlem9 31150 norm-ii-i 31169 normpythi 31174 normpari 31186 polid2i 31189 |
Copyright terms: Public domain | W3C validator |