HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjadd Structured version   Visualization version   GIF version

Theorem adjadd 32125
Description: The adjoint of the sum of two operators. Theorem 3.11(iii) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjadd ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))

Proof of Theorem adjadd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 31920 . . 3 (𝑆 ∈ dom adj𝑆: ℋ⟶ ℋ)
2 dmadjop 31920 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
3 hoaddcl 31790 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
41, 2, 3syl2an 595 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
5 dmadjrn 31927 . . . 4 (𝑆 ∈ dom adj → (adj𝑆) ∈ dom adj)
6 dmadjop 31920 . . . 4 ((adj𝑆) ∈ dom adj → (adj𝑆): ℋ⟶ ℋ)
75, 6syl 17 . . 3 (𝑆 ∈ dom adj → (adj𝑆): ℋ⟶ ℋ)
8 dmadjrn 31927 . . . 4 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
9 dmadjop 31920 . . . 4 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
108, 9syl 17 . . 3 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
11 hoaddcl 31790 . . 3 (((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ) → ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ)
127, 10, 11syl2an 595 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ)
13 adj2 31966 . . . . . . . 8 ((𝑆 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
14133expb 1120 . . . . . . 7 ((𝑆 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
1514adantlr 714 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
16 adj2 31966 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
17163expb 1120 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1817adantll 713 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1915, 18oveq12d 7466 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
201ffvelcdmda 7118 . . . . . . 7 ((𝑆 ∈ dom adj𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
2120ad2ant2r 746 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑆𝑥) ∈ ℋ)
222ffvelcdmda 7118 . . . . . . 7 ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2322ad2ant2lr 747 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
24 simprr 772 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
25 ax-his2 31115 . . . . . 6 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦) = (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)))
2621, 23, 24, 25syl3anc 1371 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦) = (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)))
27 simprl 770 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
28 adjcl 31964 . . . . . . 7 ((𝑆 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑆)‘𝑦) ∈ ℋ)
2928ad2ant2rl 748 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑆)‘𝑦) ∈ ℋ)
30 adjcl 31964 . . . . . . 7 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
3130ad2ant2l 745 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
32 his7 31122 . . . . . 6 ((𝑥 ∈ ℋ ∧ ((adj𝑆)‘𝑦) ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
3327, 29, 31, 32syl3anc 1371 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
3419, 26, 333eqtr4rd 2791 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦))
357, 10anim12i 612 . . . . . . 7 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ))
36 hosval 31772 . . . . . . . 8 (((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
37363expa 1118 . . . . . . 7 ((((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
3835, 37sylan 579 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
3938adantrl 715 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
4039oveq2d 7464 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)) = (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))))
411, 2anim12i 612 . . . . . . 7 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ))
42 hosval 31772 . . . . . . . 8 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
43423expa 1118 . . . . . . 7 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4441, 43sylan 579 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4544adantrr 716 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4645oveq1d 7463 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦))
4734, 40, 463eqtr4rd 2791 . . 3 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)))
4847ralrimivva 3208 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)))
49 adjeq 31967 . 2 (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦))) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))
504, 12, 48, 49syl3anc 1371 1 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448   + caddc 11187  chba 30951   + cva 30952   ·ih csp 30954   +op chos 30970  adjcado 30987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149  df-im 15150  df-hvsub 31003  df-hosum 31762  df-adjh 31881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator