Step | Hyp | Ref
| Expression |
1 | | dmadjop 29783 |
. . 3
⊢ (𝑆 ∈ dom
adjℎ → 𝑆: ℋ⟶ ℋ) |
2 | | dmadjop 29783 |
. . 3
⊢ (𝑇 ∈ dom
adjℎ → 𝑇: ℋ⟶ ℋ) |
3 | | hoaddcl 29653 |
. . 3
⊢ ((𝑆: ℋ⟶ ℋ ∧
𝑇: ℋ⟶ ℋ)
→ (𝑆 +op
𝑇): ℋ⟶
ℋ) |
4 | 1, 2, 3 | syl2an 598 |
. 2
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) →
(𝑆 +op 𝑇): ℋ⟶
ℋ) |
5 | | dmadjrn 29790 |
. . . 4
⊢ (𝑆 ∈ dom
adjℎ → (adjℎ‘𝑆) ∈ dom
adjℎ) |
6 | | dmadjop 29783 |
. . . 4
⊢
((adjℎ‘𝑆) ∈ dom adjℎ →
(adjℎ‘𝑆): ℋ⟶ ℋ) |
7 | 5, 6 | syl 17 |
. . 3
⊢ (𝑆 ∈ dom
adjℎ → (adjℎ‘𝑆): ℋ⟶ ℋ) |
8 | | dmadjrn 29790 |
. . . 4
⊢ (𝑇 ∈ dom
adjℎ → (adjℎ‘𝑇) ∈ dom
adjℎ) |
9 | | dmadjop 29783 |
. . . 4
⊢
((adjℎ‘𝑇) ∈ dom adjℎ →
(adjℎ‘𝑇): ℋ⟶ ℋ) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝑇 ∈ dom
adjℎ → (adjℎ‘𝑇): ℋ⟶ ℋ) |
11 | | hoaddcl 29653 |
. . 3
⊢
(((adjℎ‘𝑆): ℋ⟶ ℋ ∧
(adjℎ‘𝑇): ℋ⟶ ℋ) →
((adjℎ‘𝑆) +op
(adjℎ‘𝑇)): ℋ⟶
ℋ) |
12 | 7, 10, 11 | syl2an 598 |
. 2
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) →
((adjℎ‘𝑆) +op
(adjℎ‘𝑇)): ℋ⟶
ℋ) |
13 | | adj2 29829 |
. . . . . . . 8
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆‘𝑥) ·ih 𝑦) = (𝑥 ·ih
((adjℎ‘𝑆)‘𝑦))) |
14 | 13 | 3expb 1117 |
. . . . . . 7
⊢ ((𝑆 ∈ dom
adjℎ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘𝑥) ·ih 𝑦) = (𝑥 ·ih
((adjℎ‘𝑆)‘𝑦))) |
15 | 14 | adantlr 714 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
((𝑆‘𝑥)
·ih 𝑦) = (𝑥 ·ih
((adjℎ‘𝑆)‘𝑦))) |
16 | | adj2 29829 |
. . . . . . . 8
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih
((adjℎ‘𝑇)‘𝑦))) |
17 | 16 | 3expb 1117 |
. . . . . . 7
⊢ ((𝑇 ∈ dom
adjℎ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih
((adjℎ‘𝑇)‘𝑦))) |
18 | 17 | adantll 713 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
((𝑇‘𝑥)
·ih 𝑦) = (𝑥 ·ih
((adjℎ‘𝑇)‘𝑦))) |
19 | 15, 18 | oveq12d 7174 |
. . . . 5
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(((𝑆‘𝑥)
·ih 𝑦) + ((𝑇‘𝑥) ·ih 𝑦)) = ((𝑥 ·ih
((adjℎ‘𝑆)‘𝑦)) + (𝑥 ·ih
((adjℎ‘𝑇)‘𝑦)))) |
20 | 1 | ffvelrnda 6848 |
. . . . . . 7
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑥 ∈ ℋ) → (𝑆‘𝑥) ∈ ℋ) |
21 | 20 | ad2ant2r 746 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(𝑆‘𝑥) ∈ ℋ) |
22 | 2 | ffvelrnda 6848 |
. . . . . . 7
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
23 | 22 | ad2ant2lr 747 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(𝑇‘𝑥) ∈ ℋ) |
24 | | simprr 772 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
𝑦 ∈
ℋ) |
25 | | ax-his2 28978 |
. . . . . 6
⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) ·ih 𝑦) = (((𝑆‘𝑥) ·ih 𝑦) + ((𝑇‘𝑥) ·ih 𝑦))) |
26 | 21, 23, 24, 25 | syl3anc 1368 |
. . . . 5
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) ·ih 𝑦) = (((𝑆‘𝑥) ·ih 𝑦) + ((𝑇‘𝑥) ·ih 𝑦))) |
27 | | simprl 770 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
𝑥 ∈
ℋ) |
28 | | adjcl 29827 |
. . . . . . 7
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑦 ∈ ℋ) →
((adjℎ‘𝑆)‘𝑦) ∈ ℋ) |
29 | 28 | ad2ant2rl 748 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
((adjℎ‘𝑆)‘𝑦) ∈ ℋ) |
30 | | adjcl 29827 |
. . . . . . 7
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑦 ∈ ℋ) →
((adjℎ‘𝑇)‘𝑦) ∈ ℋ) |
31 | 30 | ad2ant2l 745 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
((adjℎ‘𝑇)‘𝑦) ∈ ℋ) |
32 | | his7 28985 |
. . . . . 6
⊢ ((𝑥 ∈ ℋ ∧
((adjℎ‘𝑆)‘𝑦) ∈ ℋ ∧
((adjℎ‘𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih
(((adjℎ‘𝑆)‘𝑦) +ℎ
((adjℎ‘𝑇)‘𝑦))) = ((𝑥 ·ih
((adjℎ‘𝑆)‘𝑦)) + (𝑥 ·ih
((adjℎ‘𝑇)‘𝑦)))) |
33 | 27, 29, 31, 32 | syl3anc 1368 |
. . . . 5
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(𝑥
·ih (((adjℎ‘𝑆)‘𝑦) +ℎ
((adjℎ‘𝑇)‘𝑦))) = ((𝑥 ·ih
((adjℎ‘𝑆)‘𝑦)) + (𝑥 ·ih
((adjℎ‘𝑇)‘𝑦)))) |
34 | 19, 26, 33 | 3eqtr4rd 2804 |
. . . 4
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(𝑥
·ih (((adjℎ‘𝑆)‘𝑦) +ℎ
((adjℎ‘𝑇)‘𝑦))) = (((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) ·ih 𝑦)) |
35 | 7, 10 | anim12i 615 |
. . . . . . 7
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) →
((adjℎ‘𝑆): ℋ⟶ ℋ ∧
(adjℎ‘𝑇): ℋ⟶
ℋ)) |
36 | | hosval 29635 |
. . . . . . . 8
⊢
(((adjℎ‘𝑆): ℋ⟶ ℋ ∧
(adjℎ‘𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) →
(((adjℎ‘𝑆) +op
(adjℎ‘𝑇))‘𝑦) = (((adjℎ‘𝑆)‘𝑦) +ℎ
((adjℎ‘𝑇)‘𝑦))) |
37 | 36 | 3expa 1115 |
. . . . . . 7
⊢
((((adjℎ‘𝑆): ℋ⟶ ℋ ∧
(adjℎ‘𝑇): ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) →
(((adjℎ‘𝑆) +op
(adjℎ‘𝑇))‘𝑦) = (((adjℎ‘𝑆)‘𝑦) +ℎ
((adjℎ‘𝑇)‘𝑦))) |
38 | 35, 37 | sylan 583 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
𝑦 ∈ ℋ) →
(((adjℎ‘𝑆) +op
(adjℎ‘𝑇))‘𝑦) = (((adjℎ‘𝑆)‘𝑦) +ℎ
((adjℎ‘𝑇)‘𝑦))) |
39 | 38 | adantrl 715 |
. . . . 5
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(((adjℎ‘𝑆) +op
(adjℎ‘𝑇))‘𝑦) = (((adjℎ‘𝑆)‘𝑦) +ℎ
((adjℎ‘𝑇)‘𝑦))) |
40 | 39 | oveq2d 7172 |
. . . 4
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(𝑥
·ih (((adjℎ‘𝑆) +op
(adjℎ‘𝑇))‘𝑦)) = (𝑥 ·ih
(((adjℎ‘𝑆)‘𝑦) +ℎ
((adjℎ‘𝑇)‘𝑦)))) |
41 | 1, 2 | anim12i 615 |
. . . . . . 7
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) →
(𝑆: ℋ⟶ ℋ
∧ 𝑇: ℋ⟶
ℋ)) |
42 | | hosval 29635 |
. . . . . . . 8
⊢ ((𝑆: ℋ⟶ ℋ ∧
𝑇: ℋ⟶ ℋ
∧ 𝑥 ∈ ℋ)
→ ((𝑆 +op
𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
43 | 42 | 3expa 1115 |
. . . . . . 7
⊢ (((𝑆: ℋ⟶ ℋ ∧
𝑇: ℋ⟶ ℋ)
∧ 𝑥 ∈ ℋ)
→ ((𝑆 +op
𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
44 | 41, 43 | sylan 583 |
. . . . . 6
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
𝑥 ∈ ℋ) →
((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
45 | 44 | adantrr 716 |
. . . . 5
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
46 | 45 | oveq1d 7171 |
. . . 4
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) ·ih 𝑦)) |
47 | 34, 40, 46 | 3eqtr4rd 2804 |
. . 3
⊢ (((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
(((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih
(((adjℎ‘𝑆) +op
(adjℎ‘𝑇))‘𝑦))) |
48 | 47 | ralrimivva 3120 |
. 2
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) →
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
(((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih
(((adjℎ‘𝑆) +op
(adjℎ‘𝑇))‘𝑦))) |
49 | | adjeq 29830 |
. 2
⊢ (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧
((adjℎ‘𝑆) +op
(adjℎ‘𝑇)): ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
(((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih
(((adjℎ‘𝑆) +op
(adjℎ‘𝑇))‘𝑦))) →
(adjℎ‘(𝑆 +op 𝑇)) = ((adjℎ‘𝑆) +op
(adjℎ‘𝑇))) |
50 | 4, 12, 48, 49 | syl3anc 1368 |
1
⊢ ((𝑆 ∈ dom
adjℎ ∧ 𝑇 ∈ dom adjℎ) →
(adjℎ‘(𝑆 +op 𝑇)) = ((adjℎ‘𝑆) +op
(adjℎ‘𝑇))) |