HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmops Structured version   Visualization version   GIF version

Theorem hmops 30283
Description: The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmops ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)

Proof of Theorem hmops
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 30137 . . 3 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hmopf 30137 . . 3 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
3 hoaddcl 30021 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
41, 2, 3syl2an 595 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
5 hmop 30185 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
653expb 1118 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
7 hmop 30185 . . . . . . 7 ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑈𝑦)) = ((𝑈𝑥) ·ih 𝑦))
873expb 1118 . . . . . 6 ((𝑈 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑈𝑦)) = ((𝑈𝑥) ·ih 𝑦))
96, 8oveqan12d 7274 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) ∧ (𝑈 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
109anandirs 675 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
111, 2anim12i 612 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ))
12 hosval 30003 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑦) = ((𝑇𝑦) + (𝑈𝑦)))
1312oveq2d 7271 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
14133expa 1116 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
1514adantrl 712 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
16 simprl 767 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
17 ffvelrn 6941 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1817ad2ant2rl 745 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
19 ffvelrn 6941 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑈𝑦) ∈ ℋ)
2019ad2ant2l 742 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑦) ∈ ℋ)
21 his7 29353 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ ∧ (𝑈𝑦) ∈ ℋ) → (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2216, 18, 20, 21syl3anc 1369 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2315, 22eqtrd 2778 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2411, 23sylan 579 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
25 hosval 30003 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
2625oveq1d 7270 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
27263expa 1116 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
2827adantrr 713 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
29 ffvelrn 6941 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
3029ad2ant2r 743 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
31 ffvelrn 6941 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
3231ad2ant2lr 744 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑥) ∈ ℋ)
33 simprr 769 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
34 ax-his2 29346 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3530, 32, 33, 34syl3anc 1369 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3628, 35eqtrd 2778 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3711, 36sylan 579 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3810, 24, 373eqtr4d 2788 . . 3 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦))
3938ralrimivva 3114 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦))
40 elhmop 30136 . 2 ((𝑇 +op 𝑈) ∈ HrmOp ↔ ((𝑇 +op 𝑈): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦)))
414, 39, 40sylanbrc 582 1 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wf 6414  cfv 6418  (class class class)co 7255   + caddc 10805  chba 29182   + cva 29183   ·ih csp 29185   +op chos 29201  HrmOpcho 29213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvadd 29263  ax-hfi 29342  ax-his1 29345  ax-his2 29346
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-hosum 29993  df-hmop 30107
This theorem is referenced by:  hmopd  30285  leopadd  30395  opsqrlem4  30406
  Copyright terms: Public domain W3C validator