HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmops Structured version   Visualization version   GIF version

Theorem hmops 31955
Description: The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmops ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)

Proof of Theorem hmops
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 31809 . . 3 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hmopf 31809 . . 3 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
3 hoaddcl 31693 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
41, 2, 3syl2an 596 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
5 hmop 31857 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
653expb 1120 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
7 hmop 31857 . . . . . . 7 ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑈𝑦)) = ((𝑈𝑥) ·ih 𝑦))
873expb 1120 . . . . . 6 ((𝑈 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑈𝑦)) = ((𝑈𝑥) ·ih 𝑦))
96, 8oveqan12d 7408 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) ∧ (𝑈 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
109anandirs 679 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
111, 2anim12i 613 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ))
12 hosval 31675 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑦) = ((𝑇𝑦) + (𝑈𝑦)))
1312oveq2d 7405 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
14133expa 1118 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
1514adantrl 716 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
16 simprl 770 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
17 ffvelcdm 7055 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1817ad2ant2rl 749 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
19 ffvelcdm 7055 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑈𝑦) ∈ ℋ)
2019ad2ant2l 746 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑦) ∈ ℋ)
21 his7 31025 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ ∧ (𝑈𝑦) ∈ ℋ) → (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2216, 18, 20, 21syl3anc 1373 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2315, 22eqtrd 2765 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2411, 23sylan 580 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
25 hosval 31675 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
2625oveq1d 7404 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
27263expa 1118 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
2827adantrr 717 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
29 ffvelcdm 7055 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
3029ad2ant2r 747 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
31 ffvelcdm 7055 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
3231ad2ant2lr 748 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑥) ∈ ℋ)
33 simprr 772 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
34 ax-his2 31018 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3530, 32, 33, 34syl3anc 1373 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3628, 35eqtrd 2765 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3711, 36sylan 580 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3810, 24, 373eqtr4d 2775 . . 3 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦))
3938ralrimivva 3181 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦))
40 elhmop 31808 . 2 ((𝑇 +op 𝑈) ∈ HrmOp ↔ ((𝑇 +op 𝑈): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦)))
414, 39, 40sylanbrc 583 1 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wf 6509  cfv 6513  (class class class)co 7389   + caddc 11077  chba 30854   + cva 30855   ·ih csp 30857   +op chos 30873  HrmOpcho 30885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-hilex 30934  ax-hfvadd 30935  ax-hfi 31014  ax-his1 31017  ax-his2 31018
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-cj 15071  df-re 15072  df-im 15073  df-hosum 31665  df-hmop 31779
This theorem is referenced by:  hmopd  31957  leopadd  32067  opsqrlem4  32078
  Copyright terms: Public domain W3C validator