HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmops Structured version   Visualization version   GIF version

Theorem hmops 31990
Description: The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmops ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)

Proof of Theorem hmops
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 31844 . . 3 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hmopf 31844 . . 3 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
3 hoaddcl 31728 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
41, 2, 3syl2an 596 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
5 hmop 31892 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
653expb 1120 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
7 hmop 31892 . . . . . . 7 ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑈𝑦)) = ((𝑈𝑥) ·ih 𝑦))
873expb 1120 . . . . . 6 ((𝑈 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑈𝑦)) = ((𝑈𝑥) ·ih 𝑦))
96, 8oveqan12d 7360 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) ∧ (𝑈 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
109anandirs 679 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
111, 2anim12i 613 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ))
12 hosval 31710 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑦) = ((𝑇𝑦) + (𝑈𝑦)))
1312oveq2d 7357 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
14133expa 1118 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
1514adantrl 716 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))))
16 simprl 770 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
17 ffvelcdm 7009 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1817ad2ant2rl 749 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
19 ffvelcdm 7009 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑈𝑦) ∈ ℋ)
2019ad2ant2l 746 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑦) ∈ ℋ)
21 his7 31060 . . . . . . 7 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ ∧ (𝑈𝑦) ∈ ℋ) → (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2216, 18, 20, 21syl3anc 1373 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑦) + (𝑈𝑦))) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2315, 22eqtrd 2765 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
2411, 23sylan 580 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = ((𝑥 ·ih (𝑇𝑦)) + (𝑥 ·ih (𝑈𝑦))))
25 hosval 31710 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
2625oveq1d 7356 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
27263expa 1118 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
2827adantrr 717 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦))
29 ffvelcdm 7009 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
3029ad2ant2r 747 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
31 ffvelcdm 7009 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
3231ad2ant2lr 748 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑥) ∈ ℋ)
33 simprr 772 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
34 ax-his2 31053 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3530, 32, 33, 34syl3anc 1373 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑥) + (𝑈𝑥)) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3628, 35eqtrd 2765 . . . . 5 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3711, 36sylan 580 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦) = (((𝑇𝑥) ·ih 𝑦) + ((𝑈𝑥) ·ih 𝑦)))
3810, 24, 373eqtr4d 2775 . . 3 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦))
3938ralrimivva 3173 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦))
40 elhmop 31843 . 2 ((𝑇 +op 𝑈) ∈ HrmOp ↔ ((𝑇 +op 𝑈): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇 +op 𝑈)‘𝑦)) = (((𝑇 +op 𝑈)‘𝑥) ·ih 𝑦)))
414, 39, 40sylanbrc 583 1 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  wf 6473  cfv 6477  (class class class)co 7341   + caddc 11001  chba 30889   + cva 30890   ·ih csp 30892   +op chos 30908  HrmOpcho 30920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-hilex 30969  ax-hfvadd 30970  ax-hfi 31049  ax-his1 31052  ax-his2 31053
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-cj 14998  df-re 14999  df-im 15000  df-hosum 31700  df-hmop 31814
This theorem is referenced by:  hmopd  31992  leopadd  32102  opsqrlem4  32113
  Copyright terms: Public domain W3C validator