| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > his2sub | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| his2sub | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubval 30995 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
| 2 | 1 | oveq1d 7384 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶)) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶)) |
| 4 | neg1cn 12147 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 5 | hvmulcl 30992 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
| 7 | ax-his2 31062 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶))) | |
| 8 | 6, 7 | syl3an2 1164 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶))) |
| 9 | ax-his3 31063 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))) | |
| 10 | 4, 9 | mp3an1 1450 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))) |
| 11 | hicl 31059 | . . . . . . 7 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ) | |
| 12 | 11 | mulm1d 11606 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶)) |
| 13 | 10, 12 | eqtrd 2764 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶)) |
| 14 | 13 | oveq2d 7385 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
| 16 | 8, 15 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
| 17 | hicl 31059 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ) | |
| 18 | 17 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ) |
| 19 | 11 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ) |
| 20 | 18, 19 | negsubd 11515 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
| 21 | 3, 16, 20 | 3eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 · cmul 11049 − cmin 11381 -cneg 11382 ℋchba 30898 +ℎ cva 30899 ·ℎ csm 30900 ·ih csp 30901 −ℎ cmv 30904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hfvmul 30984 ax-hfi 31058 ax-his2 31062 ax-his3 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-hvsub 30950 |
| This theorem is referenced by: his2sub2 31072 hi2eq 31084 pjhthlem1 31370 h1de2i 31532 pjdifnormii 31662 lnopeqi 31987 riesz3i 32041 leop2 32103 hmopidmpji 32131 pjssposi 32151 pjclem4 32178 pj3si 32186 |
| Copyright terms: Public domain | W3C validator |