HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his2sub Structured version   Visualization version   GIF version

Theorem his2sub 28283
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
his2sub ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶)))

Proof of Theorem his2sub
StepHypRef Expression
1 hvsubval 28207 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
21oveq1d 6892 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) = ((𝐴 + (-1 · 𝐵)) ·ih 𝐶))
323adant3 1155 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) = ((𝐴 + (-1 · 𝐵)) ·ih 𝐶))
4 neg1cn 11409 . . . . 5 -1 ∈ ℂ
5 hvmulcl 28204 . . . . 5 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
64, 5mpan 673 . . . 4 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
7 ax-his2 28274 . . . 4 ((𝐴 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih 𝐶)))
86, 7syl3an2 1196 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih 𝐶)))
9 ax-his3 28275 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶)))
104, 9mp3an1 1565 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶)))
11 hicl 28271 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ)
1211mulm1d 10770 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶))
1310, 12eqtrd 2847 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶))
1413oveq2d 6893 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)))
15143adant1 1153 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)))
168, 15eqtrd 2847 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)))
17 hicl 28271 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ)
18173adant2 1154 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ)
19113adant1 1153 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ)
2018, 19negsubd 10686 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶)))
213, 16, 203eqtrd 2851 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2157  (class class class)co 6877  cc 10222  1c1 10225   + caddc 10227   · cmul 10229  cmin 10554  -cneg 10555  chil 28110   + cva 28111   · csm 28112   ·ih csp 28113   cmv 28116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-hfvmul 28196  ax-hfi 28270  ax-his2 28274  ax-his3 28275
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-po 5239  df-so 5240  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10364  df-mnf 10365  df-ltxr 10367  df-sub 10556  df-neg 10557  df-hvsub 28162
This theorem is referenced by:  his2sub2  28284  hi2eq  28296  pjhthlem1  28584  h1de2i  28746  pjdifnormii  28876  lnopeqi  29201  riesz3i  29255  leop2  29317  hmopidmpji  29345  pjssposi  29365  pjclem4  29392  pj3si  29400
  Copyright terms: Public domain W3C validator